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In this paper, we investigate the dispersion-relation-preserving property of a finite
difference scheme on general geometries for computational aeroacoustics, where
nondispersive and nondissipative properties are of critical importance. The analysis
pertains to the application of the optimization algorithm of the dispersion-relation-
preserving (DRP) scheme in wave number space to the general geometries—
nonuniform Cartesian and curvilinear grids. In many computational aeroacoustics
applications, the DRP schemes have often been favored for their accuracy and
efficiency. DRP schemes, however, are implemented only on uniform Cartesian
grids. Practical problems in aeroacoustics, however, are seldom confined to uniform
Cartesian grids with the associated computing grids often being nonuniform
Cartesian or curvilinear. Grid-optimized, dispersion-relation-preserving (GODRP)
finite difference schemes are proposed, based on optimization that gives finite differ-
ence equations locally the same dispersion relation as the original partial differential
equations on the grid points in the nonuniform Cartesian or curvilinear mesh. This
local dispersion-relation-preserving property guarantees global accuracy of numeri-
cal schemes in the wave number space over the full domain. The basic idea behind
mathematical formulations of GODRP schemes is that the optimization in the wave
number space is carried out not on the computational domain but on the physical
domain. Because the properties of Cartesian and curvilinear grids differ—whether
the coupling of the coordinate variables between the physical and computational
domains exists or not, different mathematical formulations are developed for each
grid type. To investigate the effectiveness of GODRP schemes, a sequence of bench-
mark problems is executed. Through many numerical test problems, it is shown that
the use of GODRP schemes can broaden the application area of conventional DRP
schemes to aeroacoustic phenomena, enhancing both the speed and accuracy of the
computation using nonuniform Cartesian or curvilinear grids, 2001 Eisevier Science
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1. INTRODUCTION

In contrast with computational fluid dynamics (CFD), which has a history of fast deve
opment, computational aeroacoustics (CAA) has only recently emerged as a separate
of study. CAA focuses on the accurate prediction of aerodynamically generated soun
well as its propagation and far-field characteristics. Both aspects of the problem, sound
eration and propagation, are enormously demanding in terms of time-domain computa
due to the large number of grid points normally required. For aeroacoustic simulatior
become more practical, CAA schemes must thus be higher order accurate and numeri
optimized in order to reduce the required number of grid points per wavelength while s
ensuring tolerable levels of numerically induced dissipation and dispersion.

Numerical dissipation and numerical dispersion are the two primary sources of et
associated with computational schemes. Because of these errors, classical CFD sch
have been found to be unsatisfactory for the study of wave propagation over long distar
and large time intervals. Many CFD schemes, such as the MacCormack scheme, up!
schemes, and essentially nonoscillatory (ENO) schemes have been extended to high
using more stencil points for application to acoustic problems [1-7]. Recent reviews of cc
putational aeroacoustics by Tam [8] and Wells and Renaut [9] have discussed various nu
ical schemes currently popular in CAA. These include many compact and noncompact
mized schemes such as the family of high-order compact differencing schemes of Lele
and the DRP scheme of Tam and Webb [11]. They are all centered, nondissipative sche
a property desirable for linear wave propagation. The DRP scheme is implemented by u
a symmetric finite difference stencil on a uniform Cartesian grid. In this environment, t
classic DRP schemes minimize numerical dispersion errors while producing essentially
dissipation errors. Unfortunately, there are two drawbacks to the classic DRP appro
First of all, practical problems in aeroacoustics are seldom confined to uniform Cartes
geometry, with the associated computational grids usually being nonuniform or curviline
Secondly, the inherent lack of numerical dissipation may result in spurious numerical 0s
lations and instability in practical applications. Recently, the low-dispersion finite volun
scheme (LDFV) [12] and the optimized upwind DRP scheme (OUDRP) [13], which are
subset of the classical DRP scheme, have been presented in order to overcome the a
mentioned drawbacks. The former is constructed by applying an optimization algorith
similar to the derivation process of the classic DRP scheme, to the interpolation formula
compute the physical variables at the cell interface. The latter just utilizes the upwind-ba
finite difference for the optimization algorithm. The LDFV scheme is based on the fini
volume method. The multidimensional finite volume algorithm is generally more expens
in terms of numerical cost than are finite difference algorithms [14]. Furthermore, numeri
dispersion characteristics of the finite volume method are not as well developed mathen
cally as those of the finite difference method [12, 15]. This means that finite volume meth
generally contain mathematical ambiguity in the optimization for low dispersion and d
sipation schemes. The OUDRP is built based on general upwind finite difference meth
Being generally unsuitable for linear acoustic wave propagation due to their asymn
ric stencil, upwind-based finite difference formulations have been favored less than cer
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difference ones|[1, 16]. In addition, the OUDRP scheme is derived only on uniform Cartes
grids.

Some researchers [17, 18] have used the classical DRP scheme on curvilinear mesh
their numerical analysis. None of them, however, analyze the effect of curvilinear grids
the dispersion-relation-preserving property of the numerical scheme. Analysis of the eff
is one of the motivations for this paper.

In this paper, grid-optimized dispersion-relation-preserving schemes (GODRP) are
rived, which are designed to have locally the same dispersion relation as the partial diffel
tial equation and, at the same time, optimized dissipation characteristics at the given g
that are nonuniform Cartesian or curvilinear grids. To investigate the effectiveness of C
DRP schemes, some benchmark problems are executed. Through the benchmark prob
the versatility of GODRP schemes will be proven which will widen the application area
the DRP scheme to various aeroacoustic problems, especially for nonuniform rectang
or curvilinear grids.

This paper is organized as follows. In Section 2, the derivation of the DRP scheme \
be summarized. In Sections 3 and 4, mathematical formulation of GODRP schemes
nonuniform rectangular grids is described, followed by various benchmark problems u
to evaluate the effectiveness of GODRP schemes for the rectangular grids. Becaust
coordinate variables in the physical domain of curvilinear grids are coupled with those
the computation domain, GODRP schemes for such grids call for different mathemati
derivation than do those for the Cartesian grids. The derivation process of GODRP sche
for curvilinear grids is shown in Section 5. Two test simulations on curvilinear grids are th
carried out to assess the accuracy of GODRP schemes for the curvilinear grids in Sectic
One is a simulation of acoustic wave propagation and the other of the scattering of acot
pulses from a cylinder.

2. BRIEF REVIEW OF THE DRP SCHEME

Tam and Webb [11] have shown that if a given computational scheme and the goverr
equations have the same dispersion relations, then the numerical and exact solutions
have the same wave propagation characteristics and wave speeds. Accordingly, the cl
DRP scheme, which essentially preserves the wave propagation characteristics of the
erning equations, was developed. In this section, the mathematical derivation of the C
scheme is reviewed briefly as follows.

Let the spatial derivative be approximated by a central difference scheme with a unifc
mesh of spacing\x as

(5) = Z AUy &

Now by applying a Fourier transform to the above equation and making use of the derival
and shifting theorems,

I=—N (2)

=ial
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whereli is the spatial Fourier transform of ande is an effective wave number of the finite
difference scheme,

. N
F=—— 3 ad, @3)

whereq is the actual wave number, ane= «/—1.

Thusa of Eg. (3) is seen as an approximation to the actual wave numibéoreover, the
nondimensional effective wave numhet X as a periodic function af Ax with a period of
2m is a property of the finite difference schemeTo assure that the Fourier transform of the
finite difference scheme is a good approximation of the transform of the partial derivat
over a certain wave number range, it is required éhbe chosen to minimize the integrated
error,E, over a certain wave number rangewhere

e
E :/|an—o7Ax|2d(an). (4)
0

The conditions foE to be a minimum are

E=O, l=1,2,...,N (5)
GET

Equation (5) providebl equations for th&l coefficientss, | = 1,2, ..., N. Itis possible to
combine the truncated Taylor series method and the Fourier transform optimization mett
Itis well known thaix Ax approximates Ax adequately for only a limited range of the long
waves. The maximum resolvable wave number will be denoted by critical wave numi
ac. In all the following numerical simulations for comparison, a seven-point stencil th
can be obtained by minimizing Eq. (4) over the integral ramgel.1 is used. The value is
recommended by Tam and Webb [11].

3. MATHEMATICAL FORMULATION OF THE GODRP SCHEME
FOR CARTESIAN GRIDS

For problems involving Cartesian grids, there is no coupling between the coordin
variables of the physical and computational domains, so this type of mesh can be approa
with a one-dimensional formulation.

Consider the approximation of the first spatial derivatif¢dx by the finite difference
equation, which is given for a nonuniform grid of spacing;. Suppose values off both
to the right and left of the point are used in the finite difference equation wheris a
continuous variable, i.e.,

af 1 < .
N = Z aj f (X + A - AX). (6)

j=—n

job)

Here, AX is an averaged grid space and; is a normalized grid space. Each term is
defined as follows (see Fig. 1):
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FIG. 1. Schematic diagram showing then(2 1)-point stencil on a nonuniform grid.
AX = (% — X_n)/2n (7
AX = (X — X0)/AX(i =—n,—n4+1,...,n—=1,n). (8)
The Fourier transform and its inverse of a function are related by
~ 1 [* .
fla) = — / f(x)e"'** du
27 J_o
- 9)
f(x) = / f ()€ ** dx.
Taking the Fourier transform of both sides of Eq. (6) yields
1 < =~
i F = prm— a; eiaAXi‘AX F 10
o =>4 (10)
j=-n
Comparing the two sides of the above equation, it is clear that the quantity
i & N
d=— Z aj eIaAXi-AX (11)

AX &=

is the effective (or numerical) wave number of the Fourier transformation of the fini
difference scheme over the nonuniform grids. It is evident that if the grid spaces are
symmetric, the effective wave number of Eq. (11), instead of being a real number as in
conventional DRP scheme, is a complex humber. Thus, an optimization process must a
the values ofiy AX — a AX anda; AX to be as close to zero as possible for the designed ran
of wave numbers. Besides, the numerical stability of the scheme also has to be reta
during the optimization process. Hence, such purpose can be achieved by minimizing
integrated erroE, defined by the following:

=Y
E:/ @ AX — o AX[2d(@BX)
0

o — aAX — 71\ 2
+A/ aj AX + Sgn(c) exp|—In2- (
0 o

Here, theterms , ¢ denote the upper limits of the integration intervals of real and imaginar
parts, respectively. The termis the weighting factory is the half-width of a Gaussian
function, ancc is the speed of wave propagationun+ cux = 0.

It is possible to combine the traditional truncated Taylor series finite difference apprc
imation and the wave number space approximation. To determine the coefficients ¢

2
deAx).  (12)
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2n + 1-point stencil GODRP spatial discretization, information about the computatior
grids must be given. By combining this information with the Taylor expansion, sevel
constraint equations are obtained. If two coefficients to be used for the optimization are |
following 2n — 1 equations is an option.

[an_2
1 1 1 1 1 1 1 an_3
Ap_2  Ap_3 0 A1 A_p
Abo Afs 0 AZ, AZ, a0
. : ) a
A21-2  A20-2 0 AEnl—z A2 a_
L n
-1 -1 0
—An _An—l 1
=| A% |a + | —A%1| a1+ |0]. (13)
— A2 —Aﬁrflz 0

Here,Aj meansAx;, which is defined in Eq. (8). The above equation can be recastinto t
following matrix form:

AX-A=Chan + Cp_18n-1+ Co. (14)

By multiplying the inverse matrix oAX by both the left- and right-hand sides of the
equation, the following equation is obtained:

A= AXICha, + AX1Cy_1a0_1 + AX1C,. (15)
The above equation can be rewritten into the tensor form
a; = ACqjan + ACh_yjan—1 + ACy, (16)

where aj = (A)j, ACn j = (AX7ICp)j, ACh_1| = (AXICy_1)j, ACqj = (AXICp);,
in which (M); represents thgth row element of the matrii .

By inserting Eq. (16) into Eq. (12) and minimizing Eq. (12), two linear algebraic equ
tlons =0 and are obtained which determine the values of the coefficientsnd
an_1. Then the values of the other coefficieatgj = —n, —n+1,. —3,n—2) can
be set by Eq. (16).

Figure 2 shows the real and imaginary parts of the effective wave number of the GOD
finite difference scheme for uniform grids using different optimization parameters, whi
aree, €, A, ando. Figure 2A depicts the real parts of the effective wave number, whic
approximates the wave number of the partial differential equation. As the valgesrade,
increase, the maximum values of the real parts of the effective wave numbers are
augmented. Figure 2B displays the imaginary parts of the effective wave number, wt
is the numerical damping affecting the numerical stability. The plots of the imagina
part conform to the designed shapes, which are Gaussian functions centiered-atr.
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FIG. 2. Numerical wave numberAx versus the exact wave numheaXx for several values of ande at
A=0.2ando = 0.27.

The Gaussian-shaped numerical damping terms are desirable in that they are small for
wave components, i.e., smali\x, but large for short wave components, i.e., largex. As
the values of ande increase, the maximum values for the imaginary parts/et =
are also increased.
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TABLE |
Critical Wave Numbers at Various Values ofe and o with A =0.2

Resolution
e o A AX (Points per wavelength)
1.0 0.15¢ 1.125 5.586
0.207 1.125 5.585
0.257 1.126 5.580
0.307 1.126 5.580
1.2 0.15¢ 1.219 5.154
0.207 1.217 5.162
0.257 1.220 5.150
0.307 1.220 5.150
1.4 0.15¢ 1.345 4.672
0.207 1.339 4.692
0.257 1.345 4.672
0.307 1.345 4.672
1.6 0.15¢ 0.853 7.366
0.207 0.846 7.425
0.257 0.853 7.366
0.307 0.853 7.366

Critical wave numbers that are the maximum resolvable wave numbers defined
lac AX — a AX| < 0.005 are listed in Table | for the various optimization parameters. As tt
values ok (e = g) increase upto 1.4, the critical wave number tends to increase. Howev
the critical wave number decreases over the range where the vaduexoéeds 1.4. The
values of the critical wave number are sensitive to the valuedat not to that ob.

Based on this parameter study, it is recommended that the paraenbé&assigned
the value 1.4 for the maximum critical wave humbers when used in connection with 1
uniform grids. The other parameters are crucial to the imaginary parts of the numerical w
number. Thus, these values of the parameters are problem-dependent. Generally spe:
if a large damping is needed, the values)adindo are increased to the values which do
not generate the numerical instability. The opposite can be applied if a small dampin
required. Similar analysis can be carried out for nonuniform grids. Through this analy:
optimization parameters can be determined.

4. NUMERICAL SIMULATIONS USING NONUNIFORM CARTESIAN GRIDS

Some CAA benchmark problems are solved with the GODRP scheme in order to estin
the effectiveness of the scheme. The governing equations are the linearized Euler equat
The radiation and outflow boundary conditions [19] are applied at the far-field bound:
of the computational domain. Wall boundary conditions are applied with ghost values
pressure at the ghost points [20]. Numerical results are compared with analytic soluti
and (or) those from the classical DRP scheme on uniform Cartesian grids. The stan
four-step Runge—Kutta method or an optimized Adams—Bashford method [11] is usec
the numerical time-integration scheme. Unless otherwise noted, a seven-point stencil o
GODRP and DRP schemes is used in all the following numerical computations.
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4.1. First Order Linear Wave Propagation

The GODRP scheme is applied to solve first order linear wave propagation throt
several types of grids defined as follows:

(A) regular spacingAx = 1.0 (—50 < x < 50);

(B) regularly perturbed spacing(l) = (I —51) + (=1)! x (0.1)(=50 < | < 50);

(C) smoothly stretchingAx; =0.5 x <0), Ax; =0.1x 1 +0.5(1 =2,...,5), AXg=
1.0 (x > 3);

(D) suddenly coarsened meshx =05 (x <0), Ax = 1.0 (x > 0).

Figure 3 gives a comparison between the exact solutions and the numerical solution:
the GODRP scheme on each grid at a given time instant. In all cases, the timgtstep
0.1, initial wave distributions are given by the Gaussian functiori-ekp2 - (x — x¢)?/4%),
and periodic boundary conditions are applied to both ends of the computational dom:
Excellent agreement between the computed results of the GODRP scheme and the
act solution is shown for each grid type. To highlight the effectiveness of the GODF
scheme for the suddenly coarsened mesh, which is a main concern from a practical f
of view, the propagation of a disturbance on this type of mesh is shown in Fig. 3D. /
analysis of the behavior of a smooth solution as it passes through a sudden mesh c
ening has been presented by Vichnevetsky [21] for a 1-D advection equation, semi
cretized with the standard second-order centered scheme. This analysis indicates th:
though the total energy is preserved, a significant portion of the energy is deposited a
grid-coarsened interface on a reflected solution composed primarily of odd—even ma
and modulated by a smooth envelope. This reflected energy propagates upstream
with negative group velocity) and in most circumstances, if left unchecked, has the pot
tial to ultimately contaminate the genuine solution. Such phenomena, however, canno
found for the solution of the GODRP scheme if the coarsened grid sufficiently resolves
smooth solution.

4.2. Two-Dimensional Pulse

The problems of propagation and reflection off a solid wall of a 2-D pulse in the preser
of irregular grid spaces are considered next. These problems were the first CAA benchn
problems to be provided in [1]. First, 2-D wave propagation problems are investigated.
solutions were initialized at = 0 by prescribing acoustic, vorticity, and entropy distur-
bances of the form

X2+y2
ool (57

2 2 . 2 2
o= exp{—lnz- (X :;y )] +O.1exp[—ln2- (—(X Xro; ty )]
1 2

17

w2 2
U= o.o4yexp[—|n 2. (MO)H)]

2
ra

(X — X0) + yz)]

v = 0.04(X — Xg) exp{—ln 2- < 2
2

Here,ry = 3,r, = 5, andxg = 67.
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(A)
0.6

——— Exact solution
05" O Numericalsol ( T=10004t) &
A Numerical sol. ( T=5000At)

0.4

0.3

021

0.1

(B)

0.6

Exact solution
051 O  Numericalsol. (T=10004At) &%
0.4 a Numerical sol. ( T=5000At)

0.3
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0.1¢F

50 -40 30 20 -10 0 x 10 20 30 40 50
(©)

Exact solution
0.6 0 Numerical sol.

(D)

Exact solution
0.6 [m] Numerical sol.

-10 0 x 10 20 30 40 50

FIG. 3. Solutions of the first-order wave equation for several grids: (A) uniform grids; (B) regularly perturbe
grids; (C) smoothly stretching grids; (D) sudden coarsened grids.
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One of the two meshes shown in Fig. 4A is a uniform one used for the classical DI
scheme and the other is the nonuniform one for the GODRP scheme. The nonunif
grids are generated by(i) =i — 101+ (—=1)' - (=0.1)(i = 1, ...,201), andy(j) = j —
101+ (=1)! - (=0.1)(j = 1,..., 201). Figure 4B shows the computed density contour
att = 30 andt = 60. The exact solution is shown in dotted lines. Figure 4C gives th
computed density waveforms and the exact solution-at30 andt = 60 along the line
y = 0. Att = 30, the acoustic pulse and the entropy pulse are separated from each othe
t = 60, the acoustic pulse catches up and merges with the entropy pulse. An examine
of Figs. 4B and C reveals that the numerical results from using both GODRP and class
DRP show good agreement with the exact solutions.

A second problem is the reflection of an acoustic pulse off a wall in the presence
a uniform flow in semiinfinite space. The wall is gt= 0. The initial condition is as
follows:

u=v=0

x2+(y—yo)2>]

(18)
p=p=exp{—|n2.< 3

Here,yo = 25 andr = 3.

Figure 5A shows the uniform mesh used for the classic DRP scheme and the nonunif
one used for the GODRP scheme, which is clustered near the wall with an abruptly g|
coarsened interfacéf, = 2Ay;) aty = 4. The density distributions in Fig. 5B show good
agreement with each other. A detailed analysis of the reflection of an acoustic wave fr
a wall using a solid wall boundary condition by means of ghost values has been cart
out by Tam and Dong [20]. They show that in addition to the reflected acoustic wa
spurious waves are reflected. Furthermore, the spatially damped numerical waves o
computation scheme are also excited at the wall boundary. These waves form a nume
boundary layer. Figure 6 shows their numerical analysis on the numerical boundary lay
Figure 6A shows the calculated numerical boundary layer thickness as a function of the al
of incidence with a spatial resolution of Ax = 6. Itis found that the numerical boundary
layer is the thickest for normal incidence. Figure 6B shows the corresponding numers
boundary layer thickness in the case of a spatial resolutioty afx = 6. It is clear that
with finer spatial resolution the numerical boundary layer thickness decreases. Figure
shows the dependence of the magnitude of the reflected parasite wave on the ang
incidence for various spatial resolutions. The magnitude of the reflected parasite w
would greatly be reduced if the spatial resolution in the computation were increased. Fi
their conclusion, itis evident that the ability of the GODRP scheme to facilitate nonunifor
grids, such as that in Fig. 5, enables one to avoid the inefficiency of using a much gre:
number of grids in the whole computational domain, as does the conventional DRP sche
to reduce the numerical boundary layer thickness and the magnitude of the reflected par
wave.

4.3. Acoustic Radiation from an Oscillating Circular Cylinder in a Wall

This problemis also provided as one of the first CAA benchmark problems. The govern
equations for the-x plane wherdr, x, 6) are the cylindrical coordinates with the origin at
the center of the piston are as follows:
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FIG. 4. Comparison of the numerical results by using GODRP and DRP schemes for a wave propaga

problem (GODRP, —; DRP,-—; exact----).
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for the DRP scheme
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FIG.5. Comparison of the numerical results from a GODRP and a DRP scheme for reflection of an acou
wave from a wall (GODRP, —; DRP;— exact, ---).

au
at
ov
at
p
ot

+

_|_

+

ap

=
p
ay
av
ar

ou

-+ —=0.
+r+3x

(19)

The computational domain and boundary conditions are shownin Fig. 7. The normal velo
of the piston is set to be = ¢y sinwt. The amplitude and angular frequency are set to b
10~* and 0.2r, respectively. The radius of the piston equals 10. The computation domé
is0< x <100,0=<r <100.
At the axis of symmetryr = 0, the above equation is singular. In order to eliminate
this singularity, the termv/r of Eq. (19) is replaced witldv/or since ag — 0, v — 0.
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FIG. 6. Thickness of numerical boundary layer; (AYAx = 6; (B) 1/Ax = 10; and magnitude of the
reflected parasite wave, (C), as a function of the angle of incidesyce.distance between the wall and the point
where the spurious numerical solution dropg tones the magnitude of the reflected acoustic wave amplitude.)
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\

Radiation boundary

condition \A

Normal velocity
prescribed

Wall boundary condition

One row of ghost points

FIG. 7. The computational domain and boundary conditions for numerical simulations.

However, there is a sudden change in the governing finite difference equations betweel
first two columns of mesh points on the left side of the computational domain. In additic
a discontinuity in the boundary condition at the edge of the piston is present. These |
discontinuities generate short-wavelength spurious numerical waves. This is thus a g
benchmark problem, where the numerical scheme’s ability to suppress such spurious w
can be tested. Figures 8A and B show pressure contoyss=00 from classic DRP and

GODRP schemes for the beginning of a cycle. For an unbiased comparison, the s
regular mesh4r = Ax = 1) is used for both schemes. The quality of the solution of the
classical DRP scheme is degraded by oscillation produced by spurious waves. The spu
waves are mainly due to above-mentioned discontinuities (see [22] for a more deta

(B)

80

FIG. 8. Pressure contourp(=0) att =140 within full computational domain. (a) DRP scheme without
damping terms; (b) GODRP scheme (exact soluter, numerical solution, —).
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FIG.9. Pressure distribution along the axis of the piston at (a) one quarter of a cycle, (b) a half cycle, (c) th
quarters of a cycle, (d) the beginning of a cycle (exact;; DRP, —; GODRP, —).

description). The conventional DRP scheme does not have an intrinsic damping to supy
such spurious waves. In contrast with the result from the DRP scheme, the solution fron
GODRP scheme shows good agreement with the exact solution. The pressure distribu
along the axis of symmetry (= 0) at the beginning of a cycle, at one quarter of a cycle
at a half cycle, and at three quarters of a cycle are shown in Fig. 9. As can be seen f
the figure, the agreement of the results from the GODRP scheme with the exact solutic
very good. The results from the DRP scheme without damping terms show poor agreer
with those of the exact solution.

5. MATHEMATICAL FORMULATION OF GODRP SCHEMES
FOR CURVILINEAR GRIDS

Different mathematical derivations of GODRP schemes are needed for curvilinear g
than for Cartesian grids because the coordinate varigbe®ln in the computation do-
main are coupled witlk andy in the physical domain. In order to develop the mathematice
formulation of GODRP schemes for curvilinear grids, the derivative®x andaf /oy
in the physical domain are considered and cast in a strong conservative form by in
ducing a general curvilinear coordinate transformationy) — (¢, ) as follows (see
Fig. 10):

Jox —ag )T g

(20)
Lot _ i(x f)+i(x f)
Jay 9" an v

Suppose (@ + 1)-point central stencils are used to approximate the derivativesntin
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(Xims Yim) (I, m)
k
p—
¥ n
X S
Physical domain to which the Computational domain in which
optimization algorithm is applied Taylor expansion is executed

FIG. 10. Schematic diagram showing a general curvilinear coordinate transformation between the phys
and computational domains in which the optimization and Taylor expansion are carried out, respectively.

in the (, m) points of the right-hand side of Eq. (20):

1 of . :
Jax ~ Z aj (Yi+jm fiajm— Z aj (Yo, m+j fimej
= j=n
(21)
1of O .
Jay Z aj (Xpr+j,m figjm+ Z aj (X ).m+j frmej-
j=n j=n
Assume thatf (x, y) = & ©@+A and insert this form into Eq. (21):
o — n — n .
5 fa @+BY) Z aj (Yo)i+jm f e @rimtBY+im) _ Z aj (Ye)l.me | f & @4.mej+BY.mi)
=n j=n
i N N (22)
j131:ei (ax+BY) ~ _ Z a; (Xn)l+j,mfei (@X+j,m+BYi+j.m) + Z a; (X$)|,m+j fei(wX|,m+j+/3yl,m+j)_
j=n j=n
Comparing the two sides of Eq. (22), it is evident that the quantities
n . — J—
a=1J. [Z aj (y,,)|+j,me'(QAX‘”‘"“AX+ﬂAy'H""Ay)
j=-n
n _ o .
=2 @ me € “*“WMAW] ,
j=-n
(23)

n

o £ Al (@AXI L mAX+BAYILimAY

p=J [_ D ()i & @AK BRI )
j=-n

n
+ Z aj (Xe )1 m+j fei(“AX'mHAX+/3AY|AmHAy)‘|

j=-n
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are the effective wave numbers of the finite difference scheme in tady directions,
respectively. TheAx and Ay are normalized grid spaces identical to those in Eq.4%).
andAy are averaged grid spaces, defined as follows:

H = (Axmax - AXmin)/zns A73/ = (Aymax - AYmin)/zn- (24)
HereyAXmax = MAX(AXmaxs» Axmaxr;), Aymax = MAX(Aymaxsa AYmaxn)

AXmin = MAX(AXming, AXminp),  AYmin = MAX(AYming, AYmin,y)
AXmaxe = MAX(X—nm — Xi.ms Xi—n+1.m — Xims - - -5 Xitn—1.m — Xi.m, Xi4n.m — Xi.m)
AXmaxy = MAXX) m-n = Xi.m, Xi.m—n+1 — Xims - - - » X.m+n—1 — Xi.m, Xi.m+n — Xi.m)
AYmaxe = MAX(Yi—nm — Yi,ms Yi—nttm — Yims -+ Yi4n—1m — Yi,ms Yi4n,m — Yi,m)
AYmaxy = MAX(Vi.m—n — Yi.ms Yim-nt1 = Yims - - > Yimen—1 — Yims Yimsn — Yim)
AXming = MINOY_nm — Xims Xi—nt1m — Xims - -+ » Xitn—1.m — Xim, Xitn.m — Xi.m)
AXminy = MINOXG m—n — X, m, Xi,m=n+1 = Xi,ms - - - » X, m+n—1 — X,m> X, m+n — Xi,m)
AYming = MIN(Yi—nm = Yi,m, Yi-n+1m = Yims - - s Mitn-1m = Yi.ms Yienm — Yi,m)
AYminyg = MIN(Yi.m-n — ¥i.m .m-n+1 — Yioms - - -» Ymtn—1 — Yi,ms Yi.min — Yim)-
It is clear that if the values of,, V¢, X,, andx; are not symmetric, the effective wave
numbers of Eqg. (23) are not real numbers but complex numbers. Thus, an optimiza
process must allow the values ®fAX — a AX, 8; Ay — BAY, a; AX, andg;i Ay to be as

close to zero as possible for a designated range of wave numbers. For the optimizatic
the numerical wave numbers, the integrated efrds defined as follows:

R T _
E=/ / (@ BX — aBX) + (B By — BAY)) 1 d (@) d(r)
0 0

R T
—|—A/ / [ AX + BiAy + A-exp(—In2- (r — 7)%/0D)]?rd(®)d(r). (25)
0 0

Here,r = /(@ AX)? + (BAY)2, 6 = tam {(BAy/aAX). The termsR denote the upper
limits of the integration variable; 2 is the weighting factorA is the amplitude of the
Gaussian function; and is the half-width of the Gaussian function. By minimizing the
integrated erroE, the values of the coefficients can be determined. GODRP schemes
on the curvilinear grids can be constructed by combining the above optimization in
physical domain and the traditional truncated Taylor series finite difference approximat
in the computational domain (see Fig. 10). The detailed mathematical algorithm for |
determination of the coefficients of the GODRP scheme on curvilinear grids is given in
Appendix.

Figure 11 presents the sample grids to which the grid-optimization algorithm is &
plied and the comparisons of the numerical wave numbers of the GODRP and D
schemes. The mesh shown in Fig. 11A is generated analytically according to the ex
ssion
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I, - k 1=0.005
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© 19, - 9l=0.5 [Deg] (D)

FIG. 11. Curvilinear grid and the comparison of numerical wave numbers between the GODRP scheme
the DRP scheme. (Optimization parameters: R4z, A =0.07. GODRP, —; DRP;---). (A) Grid points for
which grid optimization algorithm is applied. (B) The magnitude errors of the real parts of the numerical wa
numbers;k, = \/Re(aT)2 + Re(ﬂ_)z, k= \/aZ + B2). (C) The propagation direction errors of the real parts of
the numerical wave numbersg, (= tam*(Re(8,)/Re(a,)), 6 = tam*(8/a)). (D) The absolute values of the
imaginary parts of the numerical wave numbers defineéas= |Im(a; + ﬂ_i)|.

Xl,m = Xmin + AX(' - 1)
(26)
Yi.m = Ymin + Ay[(M—1) + Asin2r /A - (X + PJ))],

where the amplitude, wavelength, and phase shift parameters are spedffiedhg. = 20,
andP = 1. Grid lengthsAx, andAy are set to be unity. Figures 11B, C, and D show the
differences of the absolute values of the real parts, the propagating angle of the real parts
the absolute values of the imaginary parts between the numerical and exact wave num
respectively. It can be observed that the numerical wave numbers of GODRP schemes r
smaller errors with the exact wave number than those of the DRP schemes. To make
figure easier to understand, comparisons of the numerical wave numbers and exact \
numbers are shown at the lile= 45° of Fig. 11 in Fig. 12. One can more easily understanc
the results of the grid-optimized algorithm with the aid of this figure. For a more quantitati
comparison between the numerical wave numbers from the GODRP and the DRP sche
Table Il shows the averaged errors of the numerical wave numbers with the exact w
number. It is found that the averaged errors of the GODRP scheme are of lower magnit
than those of the DRP schemes.

6. NUMERICAL SIMULATIONS USING CURVILINEAR GRIDS

Two test problems are executed to assess the effectiveness of GODRP schemes for ¢
linear grids. Oneis on acoustic wave propagation and the other is on the scattering of acol
pulses from a cylinder. The linearized, two-dimensional, compressible Euler equations



GRID-OPTIMIZED DISPERSION-RELATION-PRESERVING SCHEMES 267

IX, - K 1=0.005 ®)

.
W
\
1

The lines of 9 = 45 [Deg]

©
—50

0

r
48

46

44

42

40y 1

FIG. 12. Comparison of the numerical wave numbers at the lihes45°. (Exact wave number,-——;
GODRP, —; DRP;---).

considered in generalized curvilinear coordinates

au . ~ 0E OF
— = —-RU), whereRU)=— + —. 27
ot ) ) oE + on (27)

The primitive variableslJ, and the transformed fluxeg andF, are as follows:

A 1 ~ 1 - 1
U= j[p uv p]t’ E= j[SXE"'gyF]a F= j[’le+77yF]~ (28)

TABLE Il
Quantitative Comparison of the Three Parameters of the Numerical
Wave Numbers of the GODRP and DRP Schemes

Parameters
Schemes Ik —Kloa:® 10 — Oloar® Wo.ana
GODRP 1.680E-003 0.174 1.414
DRP 1.736E-003 0.225 1.440

R pm
a— f f [XIrd(r)d®)
Xip=+Lg

R rm -
f f rd(r)d@®)
0 Jo
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The physical fluxes are
E=[upOu', F=[v0pu]. (29)
The applied boundary conditions are the same as those in the previous simulation using
Cartesian grids.
6.1. Acoustic Wave Propagation

The propagation of a 2-D pressure pulse in the presence of the curvilinear grids is
termined. The solution is initialized at= 0 by prescribing a pressure disturbance of the
form

(30)

— 2 _ 2
pzeeXp{—Inz.((X Xo) ;'z(y Yo) )]

wheres = 1,b = 3, andxy = yp = 0.
The mesh, shown in Fig. 13A, is generated by Eq. (26) and used for the calculat
using the GODRP scheme. For the purpose of comparison, a uniform Cartesian gri

(A) (B)
t=230
50 T T T
Level p
1 od
2 005
o5 - i 005
= o -
25 —
| | 1
5050 25 0 25 50

©

acoustic pressure

FIG. 13. Comparison of the numerical solutions for the 2-D initial pressure pulse propagation proble|
(GODRP scheme, —; DPR scheme;-). (A) Curvilinear mesh used for the numerical simulation using GODRP
schemes. (B) Comparison of pressure contours over the full computational domair8ét {C) Comparison of
waveform of acoustic pressureyatixis at certain time instants.
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also considered for the calculation using the DRP scheme. The propagation of the pres
disturbance is computed witht = 0.1 untilt = 5. By this time, the pressure pulse moves
into the boundary region. Figures 13B and C show the pressure contours over the
computational domain and the waveform of the acoustic pressure alogegtkie at some
instants, respectively. The figure shows that the solutions of the GODRP scheme show ¢
agreement with those of the DRP scheme on the uniform grids.

6.2. Scattering of Acoustic Pulses from a Cylinder

In order to validate the present approach for curvilinear geometries, we select as a
case the benchmark problem denoted as Category I, problem 2 in the 2nd CAA Works
[16]. The boundary conditions and the scattering of a prescribed initial pressure pulse
of a circular cylinder at several instants in time for the GODRP scheme are describe
Fig. 14. The initial pulse is generated by Eq. (30) wite: 1,b = 0.2, Xo = 4, andyp = 0.
Since the configuration is symmetric, only the upper half of the domain is considered, :
symmetry boundary conditions are invoked aleng 0°, 180°. The dimension of the grid
used is 18X 201. The values of grid parametess 55/ D, ABmin, and AOmax are 0.056,
0.079 and 0.165, respectively. All cases are advanced in time with a nondimenstafal
0.001. Att = 60 andt = 80, it can be found that there are three wave fronts. The one tr
is farthest from the cylinder is the wave front created by the initial condition. The next fro
is a wave reflected off the right surface of the cylinder directly facing the initial pulse. Tl
wave front nearest the cylinder was made when two parts of the initial wave front, separ:
by the cylinder, collided and merged to the left of the surface of the cylinder.

The histories of pressure at selected points are presented in Fig. 15. The points der
‘A’ ‘B, and ‘C’ are located at (/D = 5,0 = 90°), (/D =5,0 = 135), and (/D = 5,

6 = 180°), respectively. For the comparison, numerical simulations using the GODRP ¢
the DRP schemes on the same grids are executed. Numerical results using both schem
observed to be in good agreement with the exact solution. But with more detailed inspec

T=2.0 /,.-me\ L., T=4.0 e ke
// Far-field Radiation BE‘\ / ‘\\
,f;( Radiating Acoustie puls;\'\ f’ \

Fi
Wall B.C, on cylinder

Symmetrie B.C.
T

FIG. 14. Boundary conditions applied to the computation and pressure contours at various instants fo
acoustic pulse scattered by a circular cylinder.
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of the zoomed plots shown in the right portions of Fig. 15, itis found that the results of t
GODRP scheme are more accurate than those of the DRP scheme.

7. CONCLUDING REMARKS

Algorithms of grid optimization used to create finite difference equations with the sar
dispersion relations as the original partial differential equations on general geomet
(nonuniform Cartesian and curvilinear meshes) are developed and analyzed. The ce
idea behind these algorithms is that the optimization processes are carried out not or
computational domain but on the physical domain. Because of the differing properties
Cartesian and curvilinear grids, different optimization algorithms are presented for e:
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grid type. The effectiveness and accuracy of these schemes are demonstrated in a v
of benchmark problems.

The use of nonuniform Cartesian grids can reduce the number of grid points heedec
obtaining accurate numerical solutions. GODRP schemes on nonuniform Cartesian ¢
can be easily applied in conjunction with multigrid methods. However, centered schemes
favored for their nondissipative property, which is desirable for linear wave propagation. |
thus a recommended strategy to use the GODRP/DRP combined numerical scheme, i.
use the DRP scheme on the uniform grid region and the GODRP scheme on the nonuni
area. GODRP schemes of curvilinear grids permit an assessment of the accuracy of the
difference method for curvilinear meshes from the wave number point of view. Throu
the grid-optimization process, high-order finite difference equations can be solved w
curvilinear grids with a guarantee of local and thus resultant global dispersion-relati
preserving properties.

APPENDIX: ALGORITHM FOR THE DETERMINATION OF THE
GODRP STENCIL ON THE CURVILINEAR MESH

By inserting Eq. (23) into Eq. (25), the following integrated eff&ds obtained:

R ,m n
E = A A [( Z ag,j(yr])|+j,m3in((XAX|+j‘mH+ﬁAlerjymA_y) H J

j=n

2
n
= ) @y (Ye)mej SIN@AX mi ] AX + BAY myjAY) - AX-J — an)

j=—n

n
+ <— Z A i (X)1+j,m sin(an|+j,mH+ ﬁAYIH,mA_y) A_y J

j=n

n 2
+ > 8 (X)) SIN@AX my ] AX + BAY msjAY) - Ay - J — ﬂA_y)

j=-n

j=—n

R 1 n
.rd(G)d(r)-H»/O /0 l—Zag:,j(yn)|+j,mCOS(OtAX|+j.mH+ﬁAYI+j,mA_Y)

TAX I+ ) @y (Ye)me COS@AX ms | AX + BAY myjAY) - AX - J

j=—n

n
+ ) & 044 mCOSAAX 4| mAX + BAY | mAY) - Ay - I

j=n

n
= Y 8 (X)imj COSAAX s AX + BAY msjAY) - AY - I

j=—-n
2
+A-exp—In2.-(r —m)2%/6d)| -rd(©)d(r) (A1)

To determine the coefficients of a2 1-point stencil GODRP spatial discretization in each



272 CHEONG AND LEE

direction¢ andn, the Taylor expansions in the computational domain can be utilized |
obtain several constraint equations. If two coefficients in each direction are left behind
the optimization, the following2— 1 equations are available for each direction:

o,
1 1 1 1 1 1 1 an_3
Ano Apsz -+ 0 A - A, :
A2, A2, ... 0 A% ... A% a0
. . . a
R RS
-1 -1 0
—Ap —An 1
= | —AZ | a4+ | 21 |a .+ |0 (A2)
— A2 —A22 0

Here,Aik meanssign(i) - (ix A&)¥in theg-direction andsign(i) - (i x An)¥in then-direction.
The values ofA& and An are unity in the computational domain. The above equation ca
be recast into the following matrix form:

AX - A = Chay + Cy_18n_1 + Co. (A3)

By multiplying the inverse matrix ofAX by both the left- and right-hand sides of the
equation, the following equation is obtained:

A= AXCha, + AX7IC 1801 + AXIC,. (A4)
The above equation can be rewritten into the following tensor form:
a; = ACqjan + ACh_gjan—1 + ACq. (A5)

Hereaj = (A)j, AChj = (AX™ICp)j, ACh_1j = (AXICy_1)j, ACqj = (AX'Cp)j,in
which (M); represents theth row element of the matriki. Equation (A5) can be used for
both thet - andn-directions. By inserting Eq (A5) into Eq. (A1) and minimizing Eq. (Al),
four linear algebraic equatlon§’— =0, % = 0, and;25-, are obtained. If

a 7-point GODRP stencil is used the flnal linear algebralc equatlons can be expresse

the following matrix form:

a3
e 2

=R A6
a3 (A)

Ea .
a2

Here, the elements of the matrixestf andR are defined as

R ,m
(B = / / [C5Y, S C3Y, S+ C3X,S- C3X,S+ A(C3Y,C + C3X,,C)
0 0

x (C3Y,C + C3X,C)] - rd(r) d(6)
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(Ea)1p = /OR /Oﬂ[czYnS- C3Y, S+ C2X,S- C3X,S+ A(CyY,C + CX,C)
x (C3Y,C + C3X,C)] - rd(r) d(6)

(Ea)1s = /OR /Oﬂ [C3Y:S- C3Y, S+ C3X:S- C3X, S+ A(C3Y:C + C3X:C)
x (C3Y,C + C3X,C)] - rd(r) d(®)

(Ea)1g = /OR /On [C2Y:S- C3Y, S+ CoXeS- C3X, S+ A(C,Y:C + C2X:C)
x (C3Y,C + C3X,C)] - rd(r) d(®)

(Ea)oy = /OR /07r [C3Y,S- C,Y, S+ C3X,S- C2X, S+ A(C3Y,C + C3X,C)
x (C2Y,C 4+ CX,,C)] - rd(r) d(6)

(Ea)zp = /OR /On [C.Y,S- CoY, S+ C2X,S- C2X, S+ A(CyY,C + C2X,C)
x (CY,C + C2X,C)] - rd(r) d(®)

(Ea)oz = /OR /On [C3Y:S- C,Y, S+ C3XeS- CoX, S+ A(C3Y:C + C3X:C)
x (C2Y,C + C2X,C)] - rd(r) d(®)

(Eaas = /0 ) /0 " [CaYeS - Ca¥, S+ CoXe'S- CoXy S ACYEC + CoX:C)
x (C2Y,C 4+ CoX,,C)] - rd(r) d(6)

(Ea)a1 = /OR /On [C3Y,S- C3Y: S+ C3X,S- C3X: S+ A(C3Y,C + C3X,C)
x (C3Y:C + C3X:C)] - rd(r)d(®)

(Ea)zp = /OR /Oﬂ[czYns. C3Y: S+ C3X,S- C3X: S+ A(C2Y,C + C2X,C)
x (C3Y¢C + C3X¢C)] - rd(r)d(9)

(Ea)as = /OR /On[chgs- C3Y: S+ C3X:S- C3X: S+ A(C3Y:C + C3X:C)
x (C3Y:C + C3X:C)] - rd(r)d(9)

(Ea)as = /OR /On [CaY:S- C3Ye S+ CoXeS- CaXe S+ A(CoY:C + CoX:C)
X (C3Y:C + C3X:C)] - rd(r)d(9)

(Ea)ar = /OR /Oﬂ [C3Y,S- CaYe S+ C3X,S- CoX: S+ A(C3Y,C + C3X,C)
x (CoY:C + CoX:C)] -rd(r) d(6)

(Ea)az = /OR /07r [C2Y,S- CoY: S+ C2X, S- CoX: S+ A(C2Y,C + C2X,C)

x (C2Y:C 4 CoX:C)] - rd(r) d(6)
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R ,m
(Edaz = / / [Cngs- CoYe S+ CaX:S- CoXe S+ A(C3Y:C 4 C3X:C)
0 0

X (Cng:-C + CZXEC)] . rd(l’) d(@)

R ,m
(Ea)44 = / / [CngS Cng S+ C2X§ S. CZXES—F )»(CzYSC + CzXEC)
0 0

X (CngC + CngC)] -rd(r)d()
R pm
(R)1 = —/ / [(CanS—i- CngS— O[E) . CgY,,S+ (CoXnS'f‘ CoXSS— ﬂ?y)
0 0

-C3X;,; S+ A(CpY,,C + CoY:C + CpX,,C 4 CoX:C
— A-EXP(=In2- (r —m)?/0?)) - (C3Y,C + C3X,C)] - rd(r) d(9)

R b4
(R)2 = —/ / [(COY,,S—i— CngS— OKH) . CgYnS—i- (COX,,S+ CoXES— ﬁA_y)
0 0
-C2X,; S+ A(CoY, C + CoY;C + CoX,,C + CoX:C
— A-EXP(—=In2-(r — 1)?/5?)) - (C2Y,C + C,X,C)] - rd(r)d(9)

R b4
(R)3 = —/ / [(CoY,; S+ CoY:S— aAX) - C3Ye S+ (CoX, S+ CoX:S— BAY)
0 0
-C3Xe S+ A(CpY,C + CoY:C + CpX,C 4+ CoX:C
— A-EXP(—In2- (r —m)?/0?)) - (C3Y:C 4 C3X:C)] - rd(r) d(6)

R T
(R4 = —/ / [(CoY, S+ CoYe S — aAX) - CoY: S+ (Co X, S+ CoX: S— AY)
0 0
- C2Xe S+ A(CoY, C 4 CoY:C + CoX,C + CoX:C
— A-EXP(—In2- (r —)?/0?)) - (C2Y:C + CoX:C)] - rd(r) d(9),

where

3
CrY,S= > ACq (¥y)ntjmSIN@AXs | mAX + BAYnijmAY) - AX - J,
j=—3
3
CiX,S=—- Z ACt  (X)ntj,m SIN( AXnpj. mAX + BAYny | mAY) - Ay - J,
j=—3
3
CiY,C == ACt(¥y)ntjmCOSAAXns | mAX + BAYns|mAY) - AX - J,
]'=_
3
CiX,C = Z ACt | (Xpn+j,m COItAXntjmAX + BAYnijmAY) - Ay - J,
j=—3
3
CiY:S=— ) AC{ (¥o)nmsj SN@AXns|mAX + BAYnijmAY) - AX - J,
j:_
3
CiXeS= ) ACt(X)nmsj SINGAXnimAX + BAYnijmAY) - Ay - J,
j=—3
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3
CiY:C = Z ACtj(Ye)nmsj COSaAXny | mAX + BAYnyjmAY) - AX - J,
j=—3
3
Ct XSC = - Z ACf.,j (Xé;‘)n,m+j CoiaAXn-&-j,mAX + ,BAyn+j,mAY) “Ay- J.
j:_

The values of the coefficients @t 3, a2, 8,3, anda,, can be determined by solving
Eg. (A6) at a given grid point. The values of the other coefficiemts(j =1, 0, -1, -2,
—3) anda, ;(j =1, 0,—1, -2, —3) can then be set using Eq. (A2).

The data of grid spacing and the optimized coefficients, which are used for the calculati
shown in Fig. 11, Fig. 12, and Table Il, are as follows:

Ax =10, Ay =0.781830500937500
AXnyam = 3.0, AXpmsz = 0.0,
AYniam = —1.14705456693252 Ayn mez = 2.69009427338859
AXny2m = 2.0, AXnmy2 = 0.0,
AYni2m = —0.751806499730670 Ay, mi2 = 1.80629272715007
AXntim = 1.0, AXymy1= 0.0,
AYni1.m = —0.356558432528822 Ay, m1 = 0.922491180911548
AXnm = 0.0, AXpm=00, Ayym=00, Ay,m=0.0
AXn_1m = —1.0, AXym-1=0.0,
AYn_1.m = 0.282966374191363 Aynm-1 = —0.996083239249006
AXn_2m = —2.0, AXnm-2 = 0.0,
AYn_om = 0.464641969796655 Ay, m-» = —2.09345725708408
AXp_zm = —3.0, AXnm-3 = 0.0,
AYn—3m = 0.5272431137097Q00 Aynm-3 = —3.30990572661141
ag 3 = 2.155844360735511E-002 a, 3 = 3.912413002055540E-002

a = —0.170871362842768 a,, = —0.262703436013810
a1 = 0.780980160103516 a,; = —0.228735825982549
a0 = —1.304255080014649E-002 a, o = —0.633551490786896

a1 = —0.761416333903296 a, _1 = 0.976655229760718
a: _» = 0.163045832362681 a, _, = 0.125461940424281
a3 = —2.025418852734050E-002 &, _3 = —1.625054742230063E-002

Backward and forward finite difference schemes are used near the boundaries whel
the points are not available for central differencing. The above optimization process |
be applied to the boundary stencil, except that different formulas are needed instea
Eq. (A2). The formal order of accuracy of the boundary stencil is the same as that of
central difference. The stability is also retained through the optimization process of
imaginary part of the numerical wave number.
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