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In this paper, we investigate the dispersion-relation-preserving property of a finite
difference scheme on general geometries for computational aeroacoustics, where
nondispersive and nondissipative properties are of critical importance. The analysis
pertains to the application of the optimization algorithm of the dispersion-relation-
preserving (DRP) scheme in wave number space to the general geometries—
nonuniform Cartesian and curvilinear grids. In many computational aeroacoustics
applications, the DRP schemes have often been favored for their accuracy and
efficiency. DRP schemes, however, are implemented only on uniform Cartesian
grids. Practical problems in aeroacoustics, however, are seldom confined to uniform
Cartesian grids with the associated computing grids often being nonuniform
Cartesian or curvilinear. Grid-optimized, dispersion-relation-preserving (GODRP)
finite difference schemes are proposed, based on optimization that gives finite differ-
ence equations locally the same dispersion relation as the original partial differential
equations on the grid points in the nonuniform Cartesian or curvilinear mesh. This
local dispersion-relation-preserving property guarantees global accuracy of numeri-
cal schemes in the wave number space over the full domain. The basic idea behind
mathematical formulations of GODRP schemes is that the optimization in the wave
number space is carried out not on the computational domain but on the physical
domain. Because the properties of Cartesian and curvilinear grids differ—whether
the coupling of the coordinate variables between the physical and computational
domains exists or not, different mathematical formulations are developed for each
grid type. To investigate the effectiveness of GODRP schemes, a sequence of bench-
mark problems is executed. Through many numerical test problems, it is shown that
the use of GODRP schemes can broaden the application area of conventional DRP
schemes to aeroacoustic phenomena, enhancing both the speed and accuracy of the
computation using nonuniform Cartesian or curvilinear grids.c© 2001 Elsevier Science
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1. INTRODUCTION

In contrast with computational fluid dynamics (CFD), which has a history of fast devel-
opment, computational aeroacoustics (CAA) has only recently emerged as a separate area
of study. CAA focuses on the accurate prediction of aerodynamically generated sound as
well as its propagation and far-field characteristics. Both aspects of the problem, sound gen-
eration and propagation, are enormously demanding in terms of time-domain computation
due to the large number of grid points normally required. For aeroacoustic simulation to
become more practical, CAA schemes must thus be higher order accurate and numerically
optimized in order to reduce the required number of grid points per wavelength while still
ensuring tolerable levels of numerically induced dissipation and dispersion.

Numerical dissipation and numerical dispersion are the two primary sources of error
associated with computational schemes. Because of these errors, classical CFD schemes
have been found to be unsatisfactory for the study of wave propagation over long distances
and large time intervals. Many CFD schemes, such as the MacCormack scheme, upwind
schemes, and essentially nonoscillatory (ENO) schemes have been extended to high order
using more stencil points for application to acoustic problems [1–7]. Recent reviews of com-
putational aeroacoustics by Tam [8] and Wells and Renaut [9] have discussed various numer-
ical schemes currently popular in CAA. These include many compact and noncompact opti-
mized schemes such as the family of high-order compact differencing schemes of Lele [10]
and the DRP scheme of Tam and Webb [11]. They are all centered, nondissipative schemes,
a property desirable for linear wave propagation. The DRP scheme is implemented by using
a symmetric finite difference stencil on a uniform Cartesian grid. In this environment, the
classic DRP schemes minimize numerical dispersion errors while producing essentially no
dissipation errors. Unfortunately, there are two drawbacks to the classic DRP approach.
First of all, practical problems in aeroacoustics are seldom confined to uniform Cartesian
geometry, with the associated computational grids usually being nonuniform or curvilinear.
Secondly, the inherent lack of numerical dissipation may result in spurious numerical oscil-
lations and instability in practical applications. Recently, the low-dispersion finite volume
scheme (LDFV) [12] and the optimized upwind DRP scheme (OUDRP) [13], which are a
subset of the classical DRP scheme, have been presented in order to overcome the above-
mentioned drawbacks. The former is constructed by applying an optimization algorithm,
similar to the derivation process of the classic DRP scheme, to the interpolation formulae to
compute the physical variables at the cell interface. The latter just utilizes the upwind-based
finite difference for the optimization algorithm. The LDFV scheme is based on the finite
volume method. The multidimensional finite volume algorithm is generally more expensive
in terms of numerical cost than are finite difference algorithms [14]. Furthermore, numerical
dispersion characteristics of the finite volume method are not as well developed mathemati-
cally as those of the finite difference method [12, 15]. This means that finite volume methods
generally contain mathematical ambiguity in the optimization for low dispersion and dis-
sipation schemes. The OUDRP is built based on general upwind finite difference methods.
Being generally unsuitable for linear acoustic wave propagation due to their asymmet-
ric stencil, upwind-based finite difference formulations have been favored less than central
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difference ones [1, 16]. In addition, the OUDRP scheme is derived only on uniform Cartesian
grids.

Some researchers [17, 18] have used the classical DRP scheme on curvilinear meshes for
their numerical analysis. None of them, however, analyze the effect of curvilinear grids on
the dispersion-relation-preserving property of the numerical scheme. Analysis of the effect
is one of the motivations for this paper.

In this paper, grid-optimized dispersion-relation-preserving schemes (GODRP) are de-
rived, which are designed to have locally the same dispersion relation as the partial differen-
tial equation and, at the same time, optimized dissipation characteristics at the given grids
that are nonuniform Cartesian or curvilinear grids. To investigate the effectiveness of GO-
DRP schemes, some benchmark problems are executed. Through the benchmark problems,
the versatility of GODRP schemes will be proven which will widen the application area of
the DRP scheme to various aeroacoustic problems, especially for nonuniform rectangular
or curvilinear grids.

This paper is organized as follows. In Section 2, the derivation of the DRP scheme will
be summarized. In Sections 3 and 4, mathematical formulation of GODRP schemes for
nonuniform rectangular grids is described, followed by various benchmark problems used
to evaluate the effectiveness of GODRP schemes for the rectangular grids. Because the
coordinate variables in the physical domain of curvilinear grids are coupled with those of
the computation domain, GODRP schemes for such grids call for different mathematical
derivation than do those for the Cartesian grids. The derivation process of GODRP schemes
for curvilinear grids is shown in Section 5. Two test simulations on curvilinear grids are then
carried out to assess the accuracy of GODRP schemes for the curvilinear grids in Section 6.
One is a simulation of acoustic wave propagation and the other of the scattering of acoustic
pulses from a cylinder.

2. BRIEF REVIEW OF THE DRP SCHEME

Tam and Webb [11] have shown that if a given computational scheme and the governing
equations have the same dispersion relations, then the numerical and exact solutions will
have the same wave propagation characteristics and wave speeds. Accordingly, the classic
DRP scheme, which essentially preserves the wave propagation characteristics of the gov-
erning equations, was developed. In this section, the mathematical derivation of the DRP
scheme is reviewed briefly as follows.

Let the spatial derivative be approximated by a central difference scheme with a uniform
mesh of spacing1x as (

∂u

∂x

)
j

≈ 1

1x

N∑
l=−N

al u j+l . (1)

Now by applying a Fourier transform to the above equation and making use of the derivative
and shifting theorems,

iαũ ≈ 1

1x

[
N∑

l=−N

al e
il α1x

]
ũ,

(2)
= i ᾱũ
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whereũ is the spatial Fourier transform ofu,andᾱ is an effective wave number of the finite
difference scheme,

ᾱ = −i

1x

N∑
l=−N

al e
il α1x, (3)

whereα is the actual wave number, andi = √−1.
Thusᾱ of Eq. (3) is seen as an approximation to the actual wave numberα. Moreover, the

nondimensional effective wave number ¯α1x as a periodic function ofα1x with a period of
2π is a property of the finite difference schemeal . To assure that the Fourier transform of the
finite difference scheme is a good approximation of the transform of the partial derivative
over a certain wave number range, it is required thatal be chosen to minimize the integrated
error,E, over a certain wave number range,e, where

E =
e∫

0

|α1x − ᾱ1x|2 d(α1x). (4)

The conditions forE to be a minimum are

∂E

∂al
= 0, l = 1, 2, . . . , N. (5)

Equation (5) providesN equations for theN coefficientsal , l = 1, 2, . . . , N. It is possible to
combine the truncated Taylor series method and the Fourier transform optimization method.
It is well known thatᾱ1x approximatesα1x adequately for only a limited range of the long
waves. The maximum resolvable wave number will be denoted by critical wave number
ᾱc. In all the following numerical simulations for comparison, a seven-point stencil that
can be obtained by minimizing Eq. (4) over the integral rangee= 1.1 is used. The value is
recommended by Tam and Webb [11].

3. MATHEMATICAL FORMULATION OF THE GODRP SCHEME

FOR CARTESIAN GRIDS

For problems involving Cartesian grids, there is no coupling between the coordinate
variables of the physical and computational domains, so this type of mesh can be approached
with a one-dimensional formulation.

Consider the approximation of the first spatial derivative∂ f/∂x by the finite difference
equation, which is given for a nonuniform grid of spacing1xi . Supposen values of f both
to the right and left of the pointx are used in the finite difference equation wherex is a
continuous variable, i.e.,

∂ f

∂x
≈ 1

1x

n∑
j=−n

aj f (x +1xi ·1x). (6)

Here,1x is an averaged grid space and1xi is a normalized grid space. Each term is
defined as follows (see Fig. 1):
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FIG. 1. Schematic diagram showing the (2n+ 1)-point stencil on a nonuniform grid.

1x = (xn − x−n)/2n (7)

1xi = (xi − x0)/1x(i = −n,−n+ 1, . . . ,n− 1, n). (8)

The Fourier transform and its inverse of a function are related by

f̃ (α) = 1

2π

∫ ∞
−∞

f (x)e−iαx dα

f (x) =
∫ ∞
−∞

f̃ (α)eiαx dx.

(9)

Taking the Fourier transform of both sides of Eq. (6) yields

iα f̃ =
 1

1x

n∑
j=−n

aj e
iα1xi ·1x

 f̃ . (10)

Comparing the two sides of the above equation, it is clear that the quantity

ᾱ = −i

1x

n∑
j=−n

aj e
iα1xi ·1x (11)

is the effective (or numerical) wave number of the Fourier transformation of the finite
difference scheme over the nonuniform grids. It is evident that if the grid spaces are not
symmetric, the effective wave number of Eq. (11), instead of being a real number as in the
conventional DRP scheme, is a complex number. Thus, an optimization process must allow
the values of ¯αr1x − α1x andᾱi1x to be as close to zero as possible for the designed range
of wave numbers. Besides, the numerical stability of the scheme also has to be retained
during the optimization process. Hence, such purpose can be achieved by minimizing the
integrated errorE, defined by the following:

E =
∫ er

0
|ᾱr1x − α1x|2 d(α1x)

+ λ
∫ ei

0

∣∣∣∣ᾱi1x + Sgn(c) exp

[
−ln 2 ·

(
α1x − π

σ

)2]∣∣∣∣2 d(α1x). (12)

Here, the termser ,ei denote the upper limits of the integration intervals of real and imaginary
parts, respectively. The termλ is the weighting factor,σ is the half-width of a Gaussian
function, andc is the speed of wave propagation inut + cux = 0.

It is possible to combine the traditional truncated Taylor series finite difference approx-
imation and the wave number space approximation. To determine the coefficients of a
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2n+ 1-point stencil GODRP spatial discretization, information about the computational
grids must be given. By combining this information with the Taylor expansion, several
constraint equations are obtained. If two coefficients to be used for the optimization are left,
following 2n− 1 equations is an option.



1 1 1 1 1 1 1
1n−2 1n−3 · · · 0 1−1 · · · 1−n

12
n−2 12

n−3 · · · 0 12
−1 · · · 12

−n
...

...
...

...
...

...
...

12n−2
n−2 12n−2

n−3 · · · 0 12n−2
−1 · · · 12n−2

−n





an−2

an−3
...

a0

a1
...

a−n



=


−1
−1n

−12
n

...

−12n−2
n

 an +



−1
−1n−1

−12
n−1
...

−12n−2
n−1

 an−1+


0
1
0
...

0

 . (13)

Here,1i means1xi , which is defined in Eq. (8). The above equation can be recast into the
following matrix form:

∆X · A = Cnan + Cn−1an−1+ C0. (14)

By multiplying the inverse matrix of∆X by both the left- and right-hand sides of the
equation, the following equation is obtained:

A =∆X−1Cnan +∆X−1Cn−1an−1+∆X−1C0. (15)

The above equation can be rewritten into the tensor form

aj = 1Cn, j an +1Cn−1, j an−1+1C0, j , (16)

where aj = (A) j ,1Cn, j = (∆X−1Cn) j ,1Cn−1, j = (∆X−1Cn−1) j ,1C0, j = (∆X−1C0) j ,
in which (M) j represents thej-th row element of the matrixM .

By inserting Eq. (16) into Eq. (12) and minimizing Eq. (12), two linear algebraic equa-
tions, ∂E

∂an
= 0 and ∂E

∂an−1
are obtained which determine the values of the coefficientsan and

an−1. Then the values of the other coefficientsaj ( j = −n,−n+ 1, . . . ,n− 3, n− 2) can
be set by Eq. (16).

Figure 2 shows the real and imaginary parts of the effective wave number of the GODRP
finite difference scheme for uniform grids using different optimization parameters, which
areer , ei , λ, andσ . Figure 2A depicts the real parts of the effective wave number, which
approximates the wave number of the partial differential equation. As the values ofer andei

increase, the maximum values of the real parts of the effective wave numbers are also
augmented. Figure 2B displays the imaginary parts of the effective wave number, which
is the numerical damping affecting the numerical stability. The plots of the imaginary
part conform to the designed shapes, which are Gaussian functions centered atk1x = π.
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FIG. 2. Numerical wave number ¯α1x versus the exact wave numberα1x for several values ofer andei at
λ= 0.2 andσ = 0.2π .

The Gaussian-shaped numerical damping terms are desirable in that they are small for long
wave components, i.e., smallα1x, but large for short wave components, i.e., largeα1x. As
the values ofer andei increase, the maximum values for the imaginary parts atα1x = π
are also increased.
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TABLE I

Critical Wave Numbers at Various Values ofeandσ with λ = 0.2

Resolution
e σ ᾱc1x (Points per wavelength)

1.0 0.15π 1.125 5.586
0.20π 1.125 5.585
0.25π 1.126 5.580
0.30π 1.126 5.580

1.2 0.15π 1.219 5.154
0.20π 1.217 5.162
0.25π 1.220 5.150
0.30π 1.220 5.150

1.4 0.15π 1.345 4.672
0.20π 1.339 4.692
0.25π 1.345 4.672
0.30π 1.345 4.672

1.6 0.15π 0.853 7.366
0.20π 0.846 7.425
0.25π 0.853 7.366
0.30π 0.853 7.366

Critical wave numbers that are the maximum resolvable wave numbers defined as
|αc1x−α1x|< 0.005 are listed in Table I for the various optimization parameters. As the
values ofe(er = ei ) increase up to 1.4, the critical wave number tends to increase. However,
the critical wave number decreases over the range where the value ofe exceeds 1.4. The
values of the critical wave number are sensitive to the values ofe but not to that ofσ .

Based on this parameter study, it is recommended that the parametere be assigned
the value 1.4 for the maximum critical wave numbers when used in connection with the
uniform grids. The other parameters are crucial to the imaginary parts of the numerical wave
number. Thus, these values of the parameters are problem-dependent. Generally speaking,
if a large damping is needed, the values ofη andσ are increased to the values which do
not generate the numerical instability. The opposite can be applied if a small damping is
required. Similar analysis can be carried out for nonuniform grids. Through this analysis,
optimization parameters can be determined.

4. NUMERICAL SIMULATIONS USING NONUNIFORM CARTESIAN GRIDS

Some CAA benchmark problems are solved with the GODRP scheme in order to estimate
the effectiveness of the scheme. The governing equations are the linearized Euler equations.
The radiation and outflow boundary conditions [19] are applied at the far-field boundary
of the computational domain. Wall boundary conditions are applied with ghost values of
pressure at the ghost points [20]. Numerical results are compared with analytic solutions
and (or) those from the classical DRP scheme on uniform Cartesian grids. The standard
four-step Runge–Kutta method or an optimized Adams–Bashford method [11] is used as
the numerical time-integration scheme. Unless otherwise noted, a seven-point stencil of the
GODRP and DRP schemes is used in all the following numerical computations.
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4.1. First Order Linear Wave Propagation

The GODRP scheme is applied to solve first order linear wave propagation through
several types of grids defined as follows:

(A) regular spacing:1x = 1.0 (−50≤ x ≤ 50);
(B) regularly perturbed spacing:x(I ) = (I − 51)+ (−1)I × (0.1)(−50≤ I ≤ 50);
(C) smoothly stretching:1x1= 0.5 (x≤ 0),1xI = 0.1× I + 0.5(I = 2, . . . ,5),1x6=

1.0 (x ≥ 3);
(D) suddenly coarsened mesh:1x = 0.5 (x ≤ 0 ),1x = 1.0 (x ≥ 0).

Figure 3 gives a comparison between the exact solutions and the numerical solutions for
the GODRP scheme on each grid at a given time instant. In all cases, the time step1t is
0.1, initial wave distributions are given by the Gaussian function exp(−ln 2 · (x − x0)

2/42),

and periodic boundary conditions are applied to both ends of the computational domain.
Excellent agreement between the computed results of the GODRP scheme and the ex-
act solution is shown for each grid type. To highlight the effectiveness of the GODRP
scheme for the suddenly coarsened mesh, which is a main concern from a practical point
of view, the propagation of a disturbance on this type of mesh is shown in Fig. 3D. An
analysis of the behavior of a smooth solution as it passes through a sudden mesh coars-
ening has been presented by Vichnevetsky [21] for a 1-D advection equation, semidis-
cretized with the standard second-order centered scheme. This analysis indicates that al-
though the total energy is preserved, a significant portion of the energy is deposited at the
grid-coarsened interface on a reflected solution composed primarily of odd–even modes
and modulated by a smooth envelope. This reflected energy propagates upstream (i.e.,
with negative group velocity) and in most circumstances, if left unchecked, has the poten-
tial to ultimately contaminate the genuine solution. Such phenomena, however, cannot be
found for the solution of the GODRP scheme if the coarsened grid sufficiently resolves the
smooth solution.

4.2. Two-Dimensional Pulse

The problems of propagation and reflection off a solid wall of a 2-D pulse in the presence
of irregular grid spaces are considered next. These problems were the first CAA benchmark
problems to be provided in [1]. First, 2-D wave propagation problems are investigated. The
solutions were initialized att = 0 by prescribing acoustic, vorticity, and entropy distur-
bances of the form

p = exp

[
−ln 2 ·

(
x2+ y2

r 2
1

)]

ρ = exp

[
−ln 2 ·

(
x2+ y2

r 2
1

)]
+ 0.1 exp

[
−ln 2 ·

(
(x − x0)

2+ y2

r 2
2

)]
(17)

u = 0.04y exp

[
−ln 2 ·

(
(x − x0)

2+ y2

r 2
2

)]

v = 0.04(x − x0) exp

[
−ln 2 ·

(
(x − x0)

2+ y2

r 2
2

)]
.

Here,r1 = 3, r2 = 5, andx0 = 67.
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FIG. 3. Solutions of the first-order wave equation for several grids: (A) uniform grids; (B) regularly perturbed
grids; (C) smoothly stretching grids; (D) sudden coarsened grids.
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One of the two meshes shown in Fig. 4A is a uniform one used for the classical DRP
scheme and the other is the nonuniform one for the GODRP scheme. The nonuniform
grids are generated byx(i ) = i − 101+ (−1)i · (−0.1)(i = 1, . . . ,201), andy( j ) = j −
101+ (−1) j · (−0.1)( j = 1, . . . , 201). Figure 4B shows the computed density contours
at t = 30 andt = 60. The exact solution is shown in dotted lines. Figure 4C gives the
computed density waveforms and the exact solution att = 30 andt = 60 along the line
y = 0. At t = 30, the acoustic pulse and the entropy pulse are separated from each other. At
t = 60, the acoustic pulse catches up and merges with the entropy pulse. An examination
of Figs. 4B and C reveals that the numerical results from using both GODRP and classical
DRP show good agreement with the exact solutions.

A second problem is the reflection of an acoustic pulse off a wall in the presence of
a uniform flow in semiinfinite space. The wall is aty = 0. The initial condition is as
follows:

u = v = 0
(18)

p = ρ = exp

[
−ln 2 ·

(
x2+ (y− y0)

2

r 2

)]
.

Here,y0 = 25 andr = 3.
Figure 5A shows the uniform mesh used for the classic DRP scheme and the nonuniform

one used for the GODRP scheme, which is clustered near the wall with an abruptly grid-
coarsened interface (1y2 = 21y1) aty = 4. The density distributions in Fig. 5B show good
agreement with each other. A detailed analysis of the reflection of an acoustic wave from
a wall using a solid wall boundary condition by means of ghost values has been carried
out by Tam and Dong [20]. They show that in addition to the reflected acoustic wave,
spurious waves are reflected. Furthermore, the spatially damped numerical waves of the
computation scheme are also excited at the wall boundary. These waves form a numerical
boundary layer. Figure 6 shows their numerical analysis on the numerical boundary layers.
Figure 6A shows the calculated numerical boundary layer thickness as a function of the angle
of incidence with a spatial resolution ofλ/1x= 6. It is found that the numerical boundary
layer is the thickest for normal incidence. Figure 6B shows the corresponding numerical
boundary layer thickness in the case of a spatial resolution ofλ/1x= 6. It is clear that
with finer spatial resolution the numerical boundary layer thickness decreases. Figure 6C
shows the dependence of the magnitude of the reflected parasite wave on the angle of
incidence for various spatial resolutions. The magnitude of the reflected parasite wave
would greatly be reduced if the spatial resolution in the computation were increased. From
their conclusion, it is evident that the ability of the GODRP scheme to facilitate nonuniform
grids, such as that in Fig. 5, enables one to avoid the inefficiency of using a much greater
number of grids in the whole computational domain, as does the conventional DRP scheme,
to reduce the numerical boundary layer thickness and the magnitude of the reflected parasite
wave.

4.3. Acoustic Radiation from an Oscillating Circular Cylinder in a Wall

This problem is also provided as one of the first CAA benchmark problems. The governing
equations for ther–x plane where(r, x, θ) are the cylindrical coordinates with the origin at
the center of the piston are as follows:
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FIG. 4. Comparison of the numerical results by using GODRP and DRP schemes for a wave propagation
problem (GODRP, —; DRP, –·–; exact,--- -).
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FIG. 5. Comparison of the numerical results from a GODRP and a DRP scheme for reflection of an acoustic
wave from a wall (GODRP, —; DRP, –·–; exact,--- -).

∂u

∂t
+ ∂p

∂x
= 0,

∂v

∂t
+ ∂p

∂y
= 0, (19)

∂p

∂t
+ ∂v

∂r
+ v

r
+ ∂u

∂x
= 0.

The computational domain and boundary conditions are shown in Fig. 7. The normal velocity
of the piston is set to beu = ε0 sinωt. The amplitude and angular frequency are set to be
10−4 and 0.2π , respectively. The radius of the piston equals 10. The computation domain
is 0≤ x ≤ 100, 0≤ r ≤ 100.

At the axis of symmetry,r = 0, the above equation is singular. In order to eliminate
this singularity, the termv/r of Eq. (19) is replaced with∂v/∂r since asr→ 0, v→ 0.



GRID-OPTIMIZED DISPERSION-RELATION-PRESERVING SCHEMES 261

FIG. 6. Thickness of numerical boundary layer; (A)λ/1x = 6; (B) λ/1x = 10; and magnitude of the
reflected parasite wave, (C), as a function of the angle of incidence. (δz = distance between the wall and the point
where the spurious numerical solution drops toz times the magnitude of the reflected acoustic wave amplitude.)
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FIG. 7. The computational domain and boundary conditions for numerical simulations.

However, there is a sudden change in the governing finite difference equations between the
first two columns of mesh points on the left side of the computational domain. In addition,
a discontinuity in the boundary condition at the edge of the piston is present. These two
discontinuities generate short-wavelength spurious numerical waves. This is thus a good
benchmark problem, where the numerical scheme’s ability to suppress such spurious waves
can be tested. Figures 8A and B show pressure contours ofp = 0 from classic DRP and
GODRP schemes for the beginning of a cycle. For an unbiased comparison, the same
regular mesh (1r = 1x = 1) is used for both schemes. The quality of the solution of the
classical DRP scheme is degraded by oscillation produced by spurious waves. The spurious
waves are mainly due to above-mentioned discontinuities (see [22] for a more detailed

FIG. 8. Pressure contour (p= 0) at t = 140 within full computational domain. (a) DRP scheme without
damping terms; (b) GODRP scheme (exact soluton,----; numerical solution, —).
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FIG. 9. Pressure distribution along the axis of the piston at (a) one quarter of a cycle, (b) a half cycle, (c) three
quarters of a cycle, (d) the beginning of a cycle (exact,--- -; DRP, –·–; GODRP, —).

description). The conventional DRP scheme does not have an intrinsic damping to suppress
such spurious waves. In contrast with the result from the DRP scheme, the solution from the
GODRP scheme shows good agreement with the exact solution. The pressure distributions
along the axis of symmetry (r = 0) at the beginning of a cycle, at one quarter of a cycle,
at a half cycle, and at three quarters of a cycle are shown in Fig. 9. As can be seen from
the figure, the agreement of the results from the GODRP scheme with the exact solution is
very good. The results from the DRP scheme without damping terms show poor agreement
with those of the exact solution.

5. MATHEMATICAL FORMULATION OF GODRP SCHEMES

FOR CURVILINEAR GRIDS

Different mathematical derivations of GODRP schemes are needed for curvilinear grids
than for Cartesian grids because the coordinate variablesξ andη in the computation do-
main are coupled withx andy in the physical domain. In order to develop the mathematical
formulation of GODRP schemes for curvilinear grids, the derivatives∂ f/∂x and∂ f/∂y
in the physical domain are considered and cast in a strong conservative form by intro-
ducing a general curvilinear coordinate transformation (x, y)→ (ξ , η) as follows (see
Fig. 10):

1

J

∂ f

∂x
= ∂

∂ξ
(yη f )− ∂

∂η
(yξ f )

(20)
1

J

∂ f

∂y
= − ∂

∂ξ
(xη f )+ ∂

∂η
(xξ f ).

Suppose (2n+ 1)-point central stencils are used to approximate the derivatives ofξ andη
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FIG. 10. Schematic diagram showing a general curvilinear coordinate transformation between the physical
and computational domains in which the optimization and Taylor expansion are carried out, respectively.

in the (l , m) points of the right-hand side of Eq. (20):

1

J

∂ f

∂x
≈

n∑
j=−n

aj (yη)l+ j,m fl+ j,m −
n∑

j=−n

aj (yξ )l ,m+ j fl ,m+ j

(21)
1

J

∂ f

∂y
≈ −

n∑
j=−n

aj (xη)l+ j,m fl+ j,m +
n∑

j=−n

aj (xξ )l ,m+ j fl ,m+ j .

Assume thatf (x, y) = f̄ ei (αx+βy) and insert this form into Eq. (21):

iα

J
f̄ ei (αx+βy) ≈

n∑
j=−n

aj (yη)l+ j,m f̄ ei (αxl+ j,m+βyl+ j,m)−
n∑

j=−n

aj (yξ )l ,m+ j f̄ ei (αxl ,m+ j+βyl ,m+ j )

(22)
iβ

J
f̄ ei (αx+βy) ≈ −

n∑
j=−n

aj (xη)l+ j,m f̄ ei (αxl+ j,m+βyl+ j,m)+
n∑

j=−n

aj (xξ )l ,m+ j f̄ ei (αxl ,m+ j+βyl ,m+ j ).

Comparing the two sides of Eq. (22), it is evident that the quantities

ᾱ = J ·
[

n∑
j=−n

aj (yη)l+ j,mei (α1xl+ j,m1x+β1yl+ j,m1y)

−
n∑

j=−n

aj (yξ )l ,m+ j e
i (α1xl ,m+ j1x+β1yl ,m+ j1y)

]
,

(23)

β̄ = J ·
[
−

n∑
j=−n

aj (xη)l+ j,m f̄ ei (α1xl+ j,m1x+β1yl+ j,m1y)

+
n∑

j=−n

aj (xξ )l ,m+ j f̄ ei (α1xl ,m+ j1x+β1yl ,m+ j1y)

]



GRID-OPTIMIZED DISPERSION-RELATION-PRESERVING SCHEMES 265

are the effective wave numbers of the finite difference scheme in thex and y directions,
respectively. The1x and1y are normalized grid spaces identical to those in Eq. (8).1x
and1y are averaged grid spaces, defined as follows:

1x = (1xmax−1xmin)/2n,1y = (1ymax−1ymin)/2n. (24)

Here,1xmax= MAX(1xmax,ξ , 1xmax,η),1ymax= MAX(1ymax,ξ , 1ymax,η)

1xmin = MAX(1xmin,ξ , 1xmin,η), 1ymin = MAX(1ymin,ξ , 1ymin,η)

1xmax,ξ = MAX(xl−n,m − xl ,m, xl−n+1,m − xl ,m, . . . , xl+n−1,m − xl ,m, xl+n,m − xl ,m)

1xmax,η = MAX(xl ,m−n − xl ,m, xl ,m−n+1− xl ,m, . . . , xl ,m+n−1− xl ,m, xl ,m+n − xl ,m)

1ymax,ξ = MAX(yl−n,m − yl ,m, yl−n+1,m − yl ,m, . . . , yl+n−1,m − yl ,m, yl+n,m − yl ,m)

1ymax,η = MAX(yl ,m−n − yl ,m, yl ,m−n+1− yl ,m, . . . , yl ,m+n−1− yl ,m, yl ,m+n − yl ,m)

1xmin,ξ = MIN(xl−n,m − xl ,m, xl−n+1,m − xl ,m, . . . , xl+n−1,m − xl ,m, xl+n,m − xl ,m)

1xmin,η = MIN(xl ,m−n − xl ,m, xl ,m−n+1− xl ,m, . . . , xl ,m+n−1− xl ,m, xl ,m+n − xl ,m)

1ymin,ξ = MIN(yl−n,m − yl ,m, yl−n+1,m − yl ,m, . . . , yl+n−1,m − yl ,m, yl+n,m − yl ,m)

1ymin,η = MIN(yl ,m−n − yl ,m, yl ,m−n+1− yl ,m, . . . , yl ,m+n−1− yl ,m, yl ,m+n − yl ,m).

It is clear that if the values ofyη, yξ , xη, andxξ are not symmetric, the effective wave
numbers of Eq. (23) are not real numbers but complex numbers. Thus, an optimization
process must allow the values of ¯αr1x − α1x, β̄r1y− β1y, ᾱi1x, andβ̄ i1y to be as
close to zero as possible for a designated range of wave numbers. For the optimization of
the numerical wave numbers, the integrated errorE is defined as follows:

E =
∫ R

0

∫ π

0
b(ᾱr1x − α1x)2+ (β̄r1y− β1y)2c r d(θ) d(r )

+ λ
∫ R

0

∫ π

0
[ᾱi1x + β̄ i1y+ A · exp(−ln 2 · (r − π)2/σ 2)]2r d(θ) d(r ). (25)

Here, r =
√
(α1x)2+ (β1y)2, θ = tan−1(β1y/α1x). The termsR denote the upper

limits of the integration variabler ; λ is the weighting factor;A is the amplitude of the
Gaussian function; andσ is the half-width of the Gaussian function. By minimizing the
integrated errorE, the values of the coefficientsaj can be determined. GODRP schemes
on the curvilinear grids can be constructed by combining the above optimization in the
physical domain and the traditional truncated Taylor series finite difference approximation
in the computational domain (see Fig. 10). The detailed mathematical algorithm for the
determination of the coefficients of the GODRP scheme on curvilinear grids is given in the
Appendix.

Figure 11 presents the sample grids to which the grid-optimization algorithm is ap-
plied and the comparisons of the numerical wave numbers of the GODRP and DRP
schemes. The mesh shown in Fig. 11A is generated analytically according to the expre-
ssion
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FIG. 11. Curvilinear grid and the comparison of numerical wave numbers between the GODRP scheme and
the DRP scheme. (Optimization parameters: R= 0.4π , λ= 0.07. GODRP, —; DRP,----). (A) Grid points for
which grid optimization algorithm is applied. (B) The magnitude errors of the real parts of the numerical wave
numbers;(k̄r =

√
Re(ᾱ)2 + Re(β̄)2 , k =

√
α2 + β2). (C) The propagation direction errors of the real parts of

the numerical wave numbers; (θ̄ r = tan−1(Re(β̄r )/Re(ᾱr )), θ = tan−1(β/α)). (D) The absolute values of the
imaginary parts of the numerical wave numbers defined as|k̄i | = |Im(ᾱi + β̄ i )|.

xl ,m = xmin+1x(l − 1)
(26)

yl ,m = ymin+1y [(m− 1)+ Asin(2π/λ · (x + P j))] ,

where the amplitude, wavelength, and phase shift parameters are specified asA = 1,λ = 20,
andP = 1. Grid lengths,1x, and1y are set to be unity. Figures 11B, C, and D show the
differences of the absolute values of the real parts, the propagating angle of the real parts, and
the absolute values of the imaginary parts between the numerical and exact wave numbers,
respectively. It can be observed that the numerical wave numbers of GODRP schemes reveal
smaller errors with the exact wave number than those of the DRP schemes. To make this
figure easier to understand, comparisons of the numerical wave numbers and exact wave
numbers are shown at the lineθ = 45◦ of Fig. 11 in Fig. 12. One can more easily understand
the results of the grid-optimized algorithm with the aid of this figure. For a more quantitative
comparison between the numerical wave numbers from the GODRP and the DRP schemes,
Table II shows the averaged errors of the numerical wave numbers with the exact wave
number. It is found that the averaged errors of the GODRP scheme are of lower magnitude
than those of the DRP schemes.

6. NUMERICAL SIMULATIONS USING CURVILINEAR GRIDS

Two test problems are executed to assess the effectiveness of GODRP schemes for curvi-
linear grids. One is on acoustic wave propagation and the other is on the scattering of acoustic
pulses from a cylinder. The linearized, two-dimensional, compressible Euler equations are
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FIG. 12. Comparison of the numerical wave numbers at the linesθ = 45◦. (Exact wave number, –·–·–;
GODRP, —; DRP,----).

considered in generalized curvilinear coordinates

∂Û

∂t
= −R(Û ), whereR(Û ) = ∂ Ê

∂ξ
+ ∂ F̂

∂η
. (27)

The primitive variables,̂U , and the transformed fluxes,̂E and F̂ , are as follows:

Û = 1

J
[ρ u ν p]t , Ê = 1

J
[ξx E + ξyF ], F̂ = 1

J
[ηx E + ηyF ]. (28)

TABLE II

Quantitative Comparison of the Three Parameters of the Numerical

Wave Numbers of the GODRP and DRP Schemes

Parameters

Schemes |k̄r − k|0.4π a |θ̄ r − θ |0.4π a |k̄i |0.4π a

GODRP 1.680E-003 0.174 1.414
DRP 1.736E-003 0.225 1.440

a |X|R=

∫ R

0

∫ π

0
|X|r d(r ) d(θ)∫ R

0

∫ π

0
r d(r ) d(θ)

.



268 CHEONG AND LEE

The physical fluxes are

E = [u p 0 u]t , F = [v 0 p v]t . (29)

The applied boundary conditions are the same as those in the previous simulation using the
Cartesian grids.

6.1. Acoustic Wave Propagation

The propagation of a 2-D pressure pulse in the presence of the curvilinear grids is de-
termined. The solution is initialized att = 0 by prescribing a pressure disturbance of the
form

p = ε exp

[
−ln 2 ·

(
(x − x0)

2+ (y− y0)
2

b2

)]
, (30)

whereε = 1, b = 3, andx0 = y0 = 0.
The mesh, shown in Fig. 13A, is generated by Eq. (26) and used for the calculation

using the GODRP scheme. For the purpose of comparison, a uniform Cartesian grid is

FIG. 13. Comparison of the numerical solutions for the 2-D initial pressure pulse propagation problem.
(GODRP scheme, —; DPR scheme,----). (A) Curvilinear mesh used for the numerical simulation using GODRP
schemes. (B) Comparison of pressure contours over the full computational domain at t= 30. (C) Comparison of
waveform of acoustic pressure aty-axis at certain time instants.
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also considered for the calculation using the DRP scheme. The propagation of the pressure
disturbance is computed with1t = 0.1 until t = 5. By this time, the pressure pulse moves
into the boundary region. Figures 13B and C show the pressure contours over the full
computational domain and the waveform of the acoustic pressure along they-axis at some
instants, respectively. The figure shows that the solutions of the GODRP scheme show good
agreement with those of the DRP scheme on the uniform grids.

6.2. Scattering of Acoustic Pulses from a Cylinder

In order to validate the present approach for curvilinear geometries, we select as a test
case the benchmark problem denoted as Category I, problem 2 in the 2nd CAA Workshop
[16]. The boundary conditions and the scattering of a prescribed initial pressure pulse off
of a circular cylinder at several instants in time for the GODRP scheme are described in
Fig. 14. The initial pulse is generated by Eq. (30) withε = 1, b = 0.2, x0 = 4, andy0 = 0.
Since the configuration is symmetric, only the upper half of the domain is considered, and
symmetry boundary conditions are invoked alongθ = 0◦, 180◦. The dimension of the grid
used is 181× 201. The values of grid parameters1rmax/D, 1θmin, and1θmax are 0.056,
0.079 and 0.165, respectively. All cases are advanced in time with a nondimensional1t of
0.001. Att = 60 andt = 80, it can be found that there are three wave fronts. The one that
is farthest from the cylinder is the wave front created by the initial condition. The next front
is a wave reflected off the right surface of the cylinder directly facing the initial pulse. The
wave front nearest the cylinder was made when two parts of the initial wave front, separated
by the cylinder, collided and merged to the left of the surface of the cylinder.

The histories of pressure at selected points are presented in Fig. 15. The points denoted
‘A,’ ‘B,’ and ‘C’ are located at (r/D = 5, θ = 90◦), (r/D = 5, θ = 135◦), and (r/D = 5,
θ = 180◦), respectively. For the comparison, numerical simulations using the GODRP and
the DRP schemes on the same grids are executed. Numerical results using both schemes are
observed to be in good agreement with the exact solution. But with more detailed inspection

FIG. 14. Boundary conditions applied to the computation and pressure contours at various instants for an
acoustic pulse scattered by a circular cylinder.
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FIG. 15. Time history of pressure fluctuation at selected points. (exact,h; GODRP, —; DRP,· · · · · ).

of the zoomed plots shown in the right portions of Fig. 15, it is found that the results of the
GODRP scheme are more accurate than those of the DRP scheme.

7. CONCLUDING REMARKS

Algorithms of grid optimization used to create finite difference equations with the same
dispersion relations as the original partial differential equations on general geometries
(nonuniform Cartesian and curvilinear meshes) are developed and analyzed. The central
idea behind these algorithms is that the optimization processes are carried out not on the
computational domain but on the physical domain. Because of the differing properties of
Cartesian and curvilinear grids, different optimization algorithms are presented for each
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grid type. The effectiveness and accuracy of these schemes are demonstrated in a variety
of benchmark problems.

The use of nonuniform Cartesian grids can reduce the number of grid points needed for
obtaining accurate numerical solutions. GODRP schemes on nonuniform Cartesian grids
can be easily applied in conjunction with multigrid methods. However, centered schemes are
favored for their nondissipative property, which is desirable for linear wave propagation. It is
thus a recommended strategy to use the GODRP/DRP combined numerical scheme, i.e., to
use the DRP scheme on the uniform grid region and the GODRP scheme on the nonuniform
area. GODRP schemes of curvilinear grids permit an assessment of the accuracy of the finite
difference method for curvilinear meshes from the wave number point of view. Through
the grid-optimization process, high-order finite difference equations can be solved with
curvilinear grids with a guarantee of local and thus resultant global dispersion-relation-
preserving properties.

APPENDIX: ALGORITHM FOR THE DETERMINATION OF THE

GODRP STENCIL ON THE CURVILINEAR MESH

By inserting Eq. (23) into Eq. (25), the following integrated errorE is obtained:

E =
∫ R

0

∫ π

0

[(
n∑

j=−n

aξ, j (yη)l+ j,m sin(α1xl+ j,m1x + β1yl+ j,m1y) ·1x · J

−
n∑

j=−n

aη, j (yξ )l ,m+ j sin(α1xl ,m+ j1x + β1yl ,m+ j1y) ·1x·J − α1x

)2

+
(
−

n∑
j=−n

aξ, j (xη)l+ j,m sin(α1xl+ j,m1x + β1yl+ j,m1y) ·1y · J

+
n∑

j=−n

aη, j (xξ )l ,m+ j sin(α1xl ,m+ j1x + β1yl ,m+ j1y) ·1y · J − β1y

)2
]

· rd(θ) d(r )+ λ
∫ R

0

∫ π

0

[
−

n∑
j=−n

aξ, j (yη)l+ j,m cos(α1xl+ j,m1x + β1yl+ j,m1y)

·1x · J +
n∑

j=−n

aη, j (yξ )l ,m+ j cos(α1xl ,m+ j1x + β1yl ,m+ j1y) ·1x · J

+
n∑

j=−n

aξ, j (xη)l+ j,m cos(α1xl+ j,m1x + β1yl+ j,m1y) ·1y · J

−
n∑

j=−n

aη, j (xξ )l ,m+ j cos(α1xl ,m+ j1x + β1yl ,m+ j1y) ·1y · J

+ A · exp(−ln 2 · (r − π)2/σ 2)

]2

· rd(θ) d(r ) (A1)

To determine the coefficients of a 2n+ 1-point stencil GODRP spatial discretization in each
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directionξ andη, the Taylor expansions in the computational domain can be utilized to
obtain several constraint equations. If two coefficients in each direction are left behind for
the optimization, the following 2n− 1 equations are available for each direction:



1 1 1 1 1 1 1
1n−2 1n−3 · · · 0 1−1 · · · 1−n

12
n−2 12

n−3 · · · 0 12
−1 · · · 12

−n
...

...
...

...
...

...
...

12n−2
n−2 12n−2

n−3 · · · 0 12n−2
−1 · · · 12n−2

−n





an−2
an−3
...

a0

a1
...

a−n



=


−1
−1n

−12
n

...

−12n−2
n

 an +



−1
−1n−1

−12
n−1
...

−12n−2
n−1

 an−1+


0
1
0
...

0

 . (A2)

Here,1k
i meanssign(i) · (i×1ξ)k in theξ -direction andsign(i) · (i×1η)k in theη-direction.

The values of1ξ and1η are unity in the computational domain. The above equation can
be recast into the following matrix form:

∆X · A = Cnan + Cn−1an−1+ C0. (A3)

By multiplying the inverse matrix of∆X by both the left- and right-hand sides of the
equation, the following equation is obtained:

A =∆X−1Cnan +∆X−1Cn−1an−1+∆X−1C0. (A4)

The above equation can be rewritten into the following tensor form:

aj = 1Cn, j an +1Cn−1, j an−1+1C0, j . (A5)

Here,aj = (A) j ,1Cn, j = (∆X−1Cn) j ,1Cn−1, j = (∆X−1Cn−1) j ,1C0, j = (∆X−1C0) j , in
which(M) j represents thej-th row element of the matrixM . Equation (A5) can be used for
both theξ - andη-directions. By inserting Eq. (A5) into Eq. (A1) and minimizing Eq. (A1),
four linear algebraic equations,∂E

∂aξ,n
= 0, ∂E

∂aξ,n−1
= 0, ∂E

∂aη,n
= 0, and ∂E

∂aη,n−1
, are obtained. If

a 7-point GODRP stencil is used, the final linear algebraic equations can be expressed as
the following matrix form:

Ea ·


aξ,3
aξ,2
aη,3
aη,2

 = R. (A6)

Here, the elements of the matrixes ofEa andR are defined as

(Ea)11 =
∫ R

0

∫ π

0
[C3YηS · C3YηS+ C3XηS · C3XηS+ λ(C3YηC + C3XηC)

× (C3YηC + C3XηC)] · rd(r ) d(θ)
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(Ea)12 =
∫ R

0

∫ π

0
[C2YηS · C3YηS+ C2XηS · C3XηS+ λ(C2YηC + C2XηC)

× (C3YηC + C3XηC)] · rd(r ) d(θ)

(Ea)13 =
∫ R

0

∫ π

0
[C3YξS · C3YηS+ C3XξS · C3XηS+ λ(C3YξC + C3XξC)

× (C3YηC + C3XηC)] · rd(r ) d(θ)

(Ea)14 =
∫ R

0

∫ π

0
[C2YξS · C3YηS+ C2XξS · C3XηS+ λ(C2YξC + C2XξC)

× (C3YηC + C3XηC)] · rd(r ) d(θ)

(Ea)21 =
∫ R

0

∫ π

0
[C3YηS · C2YηS+ C3XηS · C2XηS+ λ(C3YηC + C3XηC)

× (C2YηC + C2XηC)] · rd(r ) d(θ)

(Ea)22 =
∫ R

0

∫ π

0
[C2YηS · C2YηS+ C2XηS · C2XηS+ λ(C2YηC + C2XηC)

× (C2YηC + C2XηC)] · rd(r ) d(θ)

(Ea)23 =
∫ R

0

∫ π

0
[C3YξS · C2YηS+ C3XξS · C2XηS+ λ(C3YξC + C3XξC)

× (C2YηC + C2XηC)] · rd(r ) d(θ)

(Ea)24 =
∫ R

0

∫ π

0
[C2YξS · C2YηS+ C2XξS · C2XηS+ λ(C2YξC + C2XξC)

× (C2YηC + C2XηC)] · rd(r ) d(θ)

(Ea)31 =
∫ R

0

∫ π

0
[C3YηS · C3YξS+ C3XηS · C3XξS+ λ(C3YηC + C3XηC)

× (C3YξC + C3XξC)] · rd(r ) d(θ)

(Ea)32 =
∫ R

0

∫ π

0
[C2YηS · C3YξS+ C2XηS · C3XξS+ λ(C2YηC + C2XηC)

× (C3YξC + C3XξC)] · rd(r ) d(θ)

(Ea)33 =
∫ R

0

∫ π

0
[C3YξS · C3YξS+ C3XξS · C3XξS+ λ(C3YξC + C3XξC)

× (C3YξC + C3XξC)] · rd(r ) d(θ)

(Ea)34 =
∫ R

0

∫ π

0
[C2YξS · C3YξS+ C2XξS · C3XξS+ λ(C2YξC + C2XξC)

× (C3YξC + C3XξC)] · rd(r ) d(θ)

(Ea)41 =
∫ R

0

∫ π

0
[C3YηS · C2YξS+ C3XηS · C2XξS+ λ(C3YηC + C3XηC)

× (C2YξC + C2XξC)] · rd(r ) d(θ)

(Ea)42 =
∫ R

0

∫ π

0
[C2YηS · C2YξS+ C2XηS · C2XξS+ λ(C2YηC + C2XηC)

× (C2YξC + C2XξC)] · rd(r ) d(θ)
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(Ea)43 =
∫ R

0

∫ π

0
[C3YξS · C2YξS+ C3XξS · C2XξS+ λ(C3YξC + C3XξC)

× (C2YξC + C2XξC)] · rd(r ) d(θ)

(Ea)44 =
∫ R

0

∫ π

0
[C2YξS · C2YξS+ C2XξS · C2XξS+ λ(C2YξC + C2XξC)

× (C2YξC + C2XξC)] · rd(r ) d(θ)

(R)1 = −
∫ R

0

∫ π

0
[(C0YηS+ C0YξS− α1x) · C3YηS+ (C0XηS+ C0XξS− β1y)

·C3XηS+ λ(C0YηC + C0YξC + C0XηC + C0XξC

− A · EXP(−ln 2 · (r − π)2/σ 2)) · (C3YηC + C3XηC)] · rd(r ) d(θ)

(R)2 = −
∫ R

0

∫ π

0
[(C0YηS+ C0YξS− α1x) · C2YηS+ (C0XηS+ C0XξS− β1y)

·C2XηS+ λ(C0YηC + C0YξC + C0XηC + C0XξC

− A · EXP(−ln 2 · (r − π)2/σ 2)) · (C2YηC + C2XηC)] · rd(r ) d(θ)

(R)3 = −
∫ R

0

∫ π

0
[(C0YηS+ C0YξS− α1x) · C3YξS+ (C0XηS+ C0XξS− β1y)

·C3XξS+ λ(C0YηC + C0YξC + C0XηC + C0XξC

− A · EXP(−ln 2 · (r − π)2/σ 2)) · (C3YξC + C3XξC)] · rd(r ) d(θ)

(R)4 = −
∫ R

0

∫ π

0
[(C0YηS+ C0YξS− α1x) · C2YξS+ (C0XηS+ C0XξS− β1y)

·C2XξS+ λ(C0YηC + C0YξC + C0XηC + C0XξC

− A · EXP(−ln 2 · (r − π)2/σ 2)) · (C2YξC + C2XξC)] · rd(r ) d(θ),

where

C f YηS=
3∑

j=−3

1C f, j (yη)n+ j,m sin(α1xn+ j,m1x + β1yn+ j,m1y) ·1x · J,

C f XηS= −
3∑

j=−3

1C f, j (xη)n+ j,m sin(α1xn+ j,m1x + β1yn+ j,m1y) ·1y · J,

C f YηC = −
3∑

j=−3

1C f, j (yη)n+ j,m cos(α1xn+ j,m1x + β1yn+ j,m1y) ·1x · J,

C f XηC =
3∑

j=−3

1C f, j (xη)n+ j,m cos(α1xn+ j,m1x + β1yn+ j,m1y) ·1y · J,

C f YξS= −
3∑

j=−3

1C f, j (yξ )n,m+ j sin(α1xn+ j,m1x + β1yn+ j,m1y) ·1x · J,

C f XξS=
3∑

j=−3

1C f, j (xξ )n,m+ j sin(α1xn+ j,m1x + β1yn+ j,m1y) ·1y · J,
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C f YξC =
3∑

j=−3

1C f, j (yξ )n,m+ j cos(α1xn+ j,m1x + β1yn+ j,m1y) ·1x · J,

C f XξC = −
3∑

j=−3

1C f, j (xξ )n,m+ j cos(α1xn+ j,m1x + β1yn+ j,m1y) ·1y · J.

The values of the coefficients ofaξ,3, aξ,2, aη,3, andaη,2 can be determined by solving
Eq. (A6) at a given grid point. The values of the other coefficients,aξ, j ( j = 1, 0,−1,−2,
−3) andaη, j ( j = 1, 0,−1,−2,−3) can then be set using Eq. (A2).

The data of grid spacing and the optimized coefficients, which are used for the calculations
shown in Fig. 11, Fig. 12, and Table II, are as follows:

1x = 1.0, 1y = 0.781830500937500

1xn+3,m = 3.0, 1xn,m+3 = 0.0,

1yn+3,m = −1.14705456693252, 1yn,m+3 = 2.69009427338859

1xn+2,m = 2.0, 1xn,m+2 = 0.0,

1yn+2,m = −0.751806499730670, 1yn,m+2 = 1.80629272715007

1xn+1,m = 1.0, 1xn,m+1= 0.0,

1yn+1,m = −0.356558432528822, 1yn,m+1 = 0.922491180911548

1xn,m = 0.0, 1xn,m = 0.0, 1yn,m = 0.0, 1yn,m = 0.0

1xn−1,m = −1.0, 1xn,m−1 = 0.0,

1yn−1,m = 0.282966374191363, 1yn,m−1 = −0.996083239249006

1xn−2,m = −2.0, 1xn,m−2 = 0.0,

1yn−2,m = 0.464641969796655, 1yn,m−2 = −2.09345725708408

1xn−3,m = −3.0, 1xn,m−3 = 0.0,

1yn−3,m = 0.527243113709700, 1yn,m−3 = −3.30990572661141

aξ,3 = 2.155844360735511E-002, aη,3 = 3.912413002055540E-002

aξ,2 = −0.170871362842768, aη,2 = −0.262703436013810

aξ,1 = 0.780980160103516, aη,1 = −0.228735825982549

aξ,0 = −1.304255080014649E-002, aη,0 = −0.633551490786896

aξ,−1 = −0.761416333903296, aη,−1 = 0.976655229760718

aξ,−2 = 0.163045832362681, aη,−2 = 0.125461940424281

aξ,−3 = −2.025418852734050E-002, aη,−3 = −1.625054742230063E-002.

Backward and forward finite difference schemes are used near the boundaries where all
the points are not available for central differencing. The above optimization process can
be applied to the boundary stencil, except that different formulas are needed instead of
Eq. (A2). The formal order of accuracy of the boundary stencil is the same as that of the
central difference. The stability is also retained through the optimization process of the
imaginary part of the numerical wave number.



276 CHEONG AND LEE

ACKNOWLEDGMENT

This work was sponsored by the Research Institute of Engineering Science and the Brain Korea 21 Project.

REFERENCES

1. J. C. Hardin, J. R. Ristorcelli, and C. K. W. Tam, ICASE/LaRC workshop on benchmark problems in com-
putational aeroacoustics,NASA CP 3300(1995).

2. R. Hixon, Evaluation of a high-accuracy MacCormack-type scheme using benchmark problems,J. Comput.
Acoust.6, 291 (1998).

3. R. Hixon and E. Turkel, Compact implicit MacCormack-type schemes with high accuracy,J. Comput. Phys.
158, 51 (2000).

4. S. Y. Lin and Y. S. Chen, Comparison of higher resolution Euler schemes for aeroacoustic computations,
AIAA J.33, 237 (1995).

5. S. Y. Lin and Y. S. Chen, Numerical study of MUSCL schemes for computational aeroacoustics,AIAA paper
97-0023 (1987).

6. L. N. Sankar, N. N. Reddy, and N. Hariharan, A third order upwind scheme for aeroacoustic application,AIAA
paper93-0149 (1993).

7. X. Deng and H. Zhang, Developing high-order weighted compact nonlinear schemes,J. Comput. Phys.165,
1 (2000).

8. C. K. W. Tam, Computational aeroacoustics: Issues and methods,AIAA J.33, 1788 (1995).

9. V. L. Wells and R. A. Renaut, Computing aerodynamically generated noise,Annu. Rev. Fluid Mech.29, 161
(1997).

10. S. K. Lele, Compact finite difference schemes with spectral-like resolution,J. Comput. Phys.103, 16 (1992).

11. C. K. W. Tam and J. C. Webb, Dispersion-relation-preserving schemes for computational acoustics,J. Comput.
Phys.107, 262 (1993).

12. D. V. Nance, K. Viswanathan, and L. N. Sankar, Low-dispersion finite volume scheme for aeroacoustic
applications,AIAA J.35, 255 (1997).

13. M. Zhuang and R. F. Chen, Optimized upwind dispersion-relation-preserving finite difference scheme for
computational aeroacoustics,AIAA J.36, 2146 (1998).

14. J. Casper, C.-W. Shu, and H. Atkins, Comparison of two formulations for high-order accurate essentially
nonoscillatory schemes,AIAA J.32, 1970 (1994).

15. R. Vichnevetsky and J. B. Bowles,Fourier Analysis of Numerical Approximations of Hyperbolic Equations
(Soc. For Indus. & Appl. Math., Philadelphia, 1982).

16. C. K. W. Tam and J. C. Hardin, Second computational aeroacoustics workshop on benchmark problems,NASA
CP 3352(1997).

17. P. J. Morris, L. N. Long, A. Bangalore, and Q. Wang, A parallel three-dimensional computational
aeroacoustics method using nonlinear disturbance equations,J. Comput. Phys.133, 56 (1997).

18. T. Z. Dong, S. H. Shih, R. R. Mankbadi, and L. A. Povinelli, A numerical study of duct geometry effect
on radiation of engine internal noise, 3rd AIAA/CEAS A. C., AIAA-97-1604 (1997).

19. C. K. W. Tam and Z. Dong, Radiation and outflow boundary conditions for direct computation of acoustic
and flow disturbances in a nonuniform mean flow,J. Comput. Acoust.4, 175 (1996).

20. C. K. W. Tam and Z. Dong, Wall boundary condition for high-order finite difference schemes in computational
aeroacoustics,Theor. Comput. Fluid Dyn.8, 303 (1994).

21. R. Vichnevetsky, Propagation through numerical mesh refinement for hyperbolic equations,Math. Comp.
Simul.23, 344 (1981).

22. C. Cheong and S. Lee, The effects of discontinuous boundary conditions on the directivity of sound from a
piston,J. Sound Vib.239, 423 (2001).


	1. INTRODUCTION
	2. BRIEF REVIEW OF THE DRP SCHEME
	3. MATHEMATICAL FORMULATION OF THE GODRP SCHEME FOR CARTESIAN GRIDS
	FIG. 1.
	FIG. 2.
	TABLE I

	4. NUMERICAL SIMULATIONS USING NONUNIFORM CARTESIAN GRIDS
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.

	5. MATHEMATICAL FORMULATION OF GODRP SCHEMES FOR CURVILINEAR GRIDS
	FIG. 10.
	FIG. 11.
	FIG. 12.
	TABLE II

	6. NUMERICAL SIMULATIONS USING CURVILINEAR GRIDS
	FIG. 13.
	FIG. 14.
	FIG. 15.

	7. CONCLUDING REMARKS
	APPENDIX: ALGORITHM FOR THE DETERMINATION OF THE GODRP STENCIL ON THE CURVILINEAR MESH
	ACKNOWLEDGMENT
	REFERENCES

